
DOCTORAL THESIS 

 

Development and validation of prediction models for the 5-year risk 

of type 2 diabetes in a Japanese population: Japan Public Health 

Center-based Prospective (JPHC) Diabetes Study 

     （5年間の 2型糖尿病罹患リスクの予測モデルの開発および検証: 

多目的コホート糖尿病研究） 

 

 

September, 2023 

(2023年 9月) 

 

Juan Xu 

徐  娟 

 

Endocrinology and Metabolism 

Yokohama City University Graduate School of Medicine 

横浜市立大学 大学院医学研究科 医科学専攻 分子内分泌・糖尿病内科学 

 

(Research Supervisor：Atsushi Goto, Professor) 

ﾃﾞｰﾀｻｲｴﾝｽ研究科/医学研究科 公衆衛生学 

（研究指導教員：後藤 温 教授） 

 

(Doctoral Supervisor: Yasuo Terauchi, Professor) 

（指導教員：寺内 康夫 教授） 



This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting,
pagination and proofreading process which may lead to differences between this version and the Version of Record.
Please cite this article as an ‘Accepted Article’, doi:10.2188/jea.JE20220329

Copyright © 2023 Juan Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received May 13, 2022; accepted April 10, 2023; released online May 20, 2023

Acc
ep

ted
 Vers

ion

 

1 

 

Original Article 

Development and validation of prediction models for the 5-year risk of type 2 diabetes in 

a Japanese population: Japan Public Health Center-based Prospective (JPHC) Diabetes 

Study 

 

Juan Xua, Atsushi Gotob, Maki Konishic, Masayuki Katod, Tetsuya Mizouec, Yasuo Terauchia, 

Shoichiro Tsuganee,f, Norie Sawadae, Mitsuhiko Nodag, for the JPHC Study Group† 

 

aDepartment of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City 

University, Yokohama, Japan. 

bDepartment of Health Data Science, Graduate School of Data Science, Yokohama City 

University, Yokohama, Japan. 

cDepartment of Epidemiology and Prevention, Center for Clinical Sciences, National Center 

for Global Health and Medicine, Tokyo, Japan. 

dHealth Management Center and Diagnostic Imaging Center, Toranomon Hospital, Tokyo, 

Japan. 

eDivision of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-ku, 

Tokyo, Japan. 

fNational Institute of Health and Nutrition, National Institutes of Biomedical Innovation, 

Health and Nutrition, Shinjuku-ku, Tokyo, Japan. 

gDepartment of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International 

University of Health and Welfare, Ichikawa, Japan. 

 

†Japan Members listed in http://epi.ncc.go.jp/en/jphc/781/3838.html. 



Acc
ep

ted
 Vers

ion

 

2 

 

 

Correspondence: 

Atsushi Goto, MD, Ph.D., MPH 

Department of Health Data Science, 

Graduate School of Data Science, 

Yokohama City University 

22-2 Seto, Kanazawa-Ku, 

Yokohama 236-0027, Japan 

E-mail: agoto@yokohama-cu.ac.jp 

 

 

Running Title: 

Prediction models for incidence of type 2 diabetes 
 

Numbers of Tables: 3 

Numbers of Figures: 3 

Numbers of Supplemental materials: 2



Acc
ep

ted
 Vers

ion

 

3 

 

ABSTRACT 1 

Background: This study aimed to develop models to predict the 5-year incidence of T2DM in 2 

a Japanese population and validate them externally in an independent Japanese population. 3 

Methods: Data from 10,986 participants (aged 46–75 years) in the development cohort of the 4 

Japan Public Health Center-based Prospective Diabetes Study and 11,345 participants (aged 5 

46–75 years) in the validation cohort of the Japan Epidemiology Collaboration on Occupational 6 

Health Study were used to develop and validate the risk scores in logistic regression models. 7 

Results: We considered non-invasive (sex, body mass index, family history of diabetes mellitus, 8 

and diastolic blood pressure) and invasive (glycated hemoglobin [HbA1c] and fasting plasma 9 

glucose [FPG]) predictors to predict the 5-year probability of incident diabetes. The area under 10 

the receiver operating characteristic curve was 0.643 for the non-invasive risk model, 0.786 for 11 

the invasive risk model with HbA1c but not FPG, and 0.845 for the invasive risk model with 12 

HbA1c and FPG. The optimism for the performance of all models was small by internal 13 

validation. In the internal-external cross-validation, these models tended to show similar 14 

discriminative ability across different areas. The discriminative ability of each model was 15 

confirmed using external validation datasets. The invasive risk model with only HbA1c was 16 

well-calibrated in the validation cohort.   17 

 Conclusions: Our invasive risk models are expected to discriminate between high- and low-18 

risk individuals with T2DM in a Japanese population.  19 

Keywords: Diabetes, risk score, prediction model, Japanese population, Japan Public Health 20 

Center-based Prospective (JPHC) Study  21 
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1.  Introduction 22 

Diabetes mellitus (DM) is a group of metabolic diseases characterized by hyperglycemia 23 

resulting from defects in insulin secretion, insulin action, or both.1 According to the 24 

International Diabetes Federation, the global prevalence of diabetes in 2021 was estimated to 25 

be 10.5% (537 million people) and was expected to rise to 12.2% (783 million) by 2045.2 26 

Diabetes is thought to be one of the top ten causes of adult death.3 In Japan, because of its aging 27 

population, the absolute number of people with diabetes is expected to substantially increase 28 

in the coming decades.4 Since several intervention studies in different ethnic populations have 29 

demonstrated that type 2 diabetes mellitus (T2DM) can be effectively prevented through diet 30 

and lifestyle modifications in high-risk individuals;5-8 identifying high-risk individuals and 31 

having them make diet and lifestyle changes is important for preventing diabetes onset.  32 

A disease risk score is a calculated number or score that estimates the probability or rate 33 

of disease occurrence, derived from the risk factors of the disease. At present, there are several 34 

diabetes risk scores.9-13 However, the substantial differences in diabetes incidence among ethnic 35 

groups14,15 impact the performance of each model.16 Although there are at least six diabetes 36 

risk prediction models for the Japanese population,17-22 none are based on a general population 37 

across multiple areas in Japan. Although invasive risk scores are likely to have better predictive 38 

performance, non-invasive risk scores may be useful because they are less expensive and more 39 

convenient than invasive risk scores in large-scale screening. 40 

Therefore, we aimed to develop regression models that used non-invasive and invasive 41 

predictors to predict the 5-year incidence of diabetes in a Japanese population and validate 42 

them externally in an independent Japanese population.  43 

 44 

2.  METHODS/DESIGN 45 
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2.1  Study population 46 

The Japan Public Health Center-based Prospective Study (JPHC Study), designed to 47 

collect evidence based on multipurpose cohort studies to benefit health maintenance and 48 

improvement approaches, was initiated in 1990 for Cohort I and in 1993 for Cohort II. It 49 

included residents of 11 public health center areas (Iwate, Akita, Nagano, Okinawa, and Tokyo 50 

prefectures for Cohort I; Ibaraki, Niigata, Kochi, Nagasaki, Okinawa, and Osaka prefectures 51 

for Cohort II), aged 40–69 years at each baseline survey. Participants in this analysis underwent 52 

annual health checkups, completed self-administered questionnaire surveys, and provided 53 

blood samples. Specific details of the study design have been published previously.23 54 

The JPHC Diabetes Study started in 1998–1999 for Cohort II (residents of the Osaka 55 

prefectures were excluded because the health checkup schedule was different from those of the 56 

other areas) and in 2000–2001 for Cohort I. In the baseline surveys, participants in Cohort I 57 

were 51–70 years old and 46–75 years old in Cohort II. A self-administered questionnaire, 58 

given during health checkups, collected data regarding family history of diabetes, previous 59 

diabetes examination results, any diagnosis of diabetes by a physician, current diabetes 60 

medications, signs of diabetic complications, a brief history of changes in body weight, time 61 

spent walking, and childbirth history.24 The 5-year follow-up survey was performed in the same 62 

way in 2003–2004 for Cohort II and in 2005–2006 for Cohort I. 63 

Among 28,362 adults enrolled in the baseline survey of this study, 10,986 (39%) were 64 

included in the final analysis. As shown in Figure 1, participants with diabetes (n=2,776) and 65 

those whose diabetes status could not be determined (n=4) at the baseline survey were excluded. 66 

Then, participants who responded to the 6-year follow-up survey but not to the 5-year follow-67 

up survey (n = 1,625) and those who did not respond to the 5-year follow-up survey (n = 12,964) 68 

were excluded. Finally, participants who could not be diagnosed as being either diabetic or 69 
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non-diabetic (n=7) at the 5-year follow-up survey were excluded. The remaining 10,986 70 

participants were included in the analysis to develop a prediction model.  71 

The Japan Epidemiology Collaboration on Occupational Health (J-ECOH) Study is an 72 

ongoing multi-center epidemiologic study conducted on workers from 12 companies spanning 73 

various industries; details of the study design have been published elsewhere.20 For the present 74 

external validation, we retrieved data from one participating company that provided health 75 

checkup data, including a family history of diabetes, and defined an analytic cohort comprising 76 

individuals who had received health checkups in the fiscal year 2013 (baseline). As described 77 

elsewhere25, study participants in the J-ECOH study were asked to select up to three activities 78 

from a list of 20 activities and the frequency (times per month) and duration (minutes per 79 

occasion) for each activity. Leisure-time physical activity (minutes per month) was computed 80 

by summing up the duration of activities reported by each participant. A total of 19,827 81 

participants aged 46–75 years underwent a baseline checkup and had no missing data necessary 82 

for the validation analysis. Of these, individuals with diabetes at baseline (n = 2,663) and non-83 

attendants to the 5-year health checkup in the fiscal year 2018 (n = 5,819) were excluded. 84 

Finally, 11,345 (57%) were used to validate the prediction models (Figure 1). 85 

All participants provided written informed consent. The JPHC Study was approved by the 86 

ethics committees of Yokohama City University and the National Cancer Center, Japan, and 87 

was also approved by the ethics committee of the National Center for Global Health and 88 

Medicine, Japan. The J-ECOH study was approved by the Ethics Committee of the National 89 

Center for Global Health and Medicine, Japan. 90 

 91 

2.2  Predictors 92 
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Based on previous literature, we selected 16 potential diabetes predictors (non-invasive 93 

predictors: age, sex, body mass index [BMI], time spent walking, family history of DM, systolic 94 

blood pressure [SBP], and diastolic blood pressure [DBP]; levels of invasive predictors: alanine 95 

aminotransferase [ALT], aspartate aminotransferase [AST], γ-glutamyl transferase [GGT], 96 

high-density lipoprotein [HDL], total cholesterol [TC], triglyceride [TG], estimated glomerular 97 

filtration rate [eGFR], fasting plasma glucose [FPG], and glycated hemoglobin [HbA1c]). All 98 

these factors were associated with the development of T2DM in previous studies.26–34 99 

Data on age, height, weight, time spent walking, and family history of DM were acquired 100 

from the questionnaire; BMI was calculated as the weight in kilograms divided by the squared 101 

height in meters. The participants were classified into four levels based on the time spent 102 

walking: walking time < 0.5, 0.5–1, 1–2, or > 2 hours per day. A family history of diabetes was 103 

defined as the presence of diabetes in first-degree relatives. Blood pressure measurements were 104 

recorded during the health checkups. 105 

When collecting blood samples, participants were not required to fast. Since fasting status 106 

has a great influence on TG levels, this parameter was excluded from our analysis. eGFR 107 

(mL/min/1.73 m2) was calculated using the formula: = 194 × serum creatinine−1.094 × age−0.287 108 

× 0.739 (if female).35 The recorded HbA1c level (expressed per the Japan Diabetes Society 109 

[JDS]) was converted to the National Glycohemoglobin Standardization Program (NGSP) 110 

equivalent using the following formula: HbA1c (%) =1.02 × HbA1c (JDS) (%) + 0.25%.36 111 

 112 

2.3  Primary outcome measures 113 

The diagnostic criteria for DM were as follows: (1) HbA1c value ≥ 6.5%, (2) FPG value 114 

≥ 126 mg/dL, (3) random plasma glucose level ≥ 200 mg/dL, (4) physician-diagnosed DM 115 

(self-reported), or (5) undergoing any kind of diabetes treatment, including diet or exercise 116 



Acc
ep

ted
 Vers

ion

 

8 

 

interventions (self-reported). These diagnostic criteria were used to exclude patients with 117 

diabetes at baseline and to confirm the number of patients diagnosed with diabetes at the 5-118 

year follow-up in both the JPHC and J-ECOH studies. It was previously shown that 94% of 119 

self-reported diabetes cases were confirmed by medical reports in a subsample of the JPHC 120 

Study participants.37 121 

 122 

2.4  Statistical analysis 123 

After the multiple imputations as described later, logistic regression models were used to 124 

develop prediction models for diabetes incidence and to estimate β coefficients, odds ratios 125 

(ORs), and 95% confidence intervals (CIs). First, we examined all variables in the univariate 126 

regression model. We used a multiple logistic regression model with backward variable 127 

selection (fastbw function from the rms package) to determine significant variables in each 128 

multiple imputed dataset and in each JPHC Diabetes Study area. Predictors selected in more 129 

than 50% of the multiple imputed datasets among >50% of the areas were included in the final 130 

models38. Model 1 considered all non-invasive risk factors as potential predictors; Model 2 131 

considered all non-invasive and invasive predictors, except FPG; and Model 3 considered all 132 

variables. Because the proportion of available FPG values was low, a model with FPG could 133 

produce unstable estimates because of missing data. Therefore, we developed Models 2 and 3 134 

separately, although we imputed the FPG values using the multiple imputation method.  135 

We used the rcorr function from the Hmisc package to assess multicollinearity, which 136 

suggested that the predictors did not strongly correlate with each other. We also examined 137 

missing values for several predictors. Assuming that the probability of missing data is 138 

determined only by the observed data (i.e., missing at the random condition), we used the 139 

multiple imputations by chained equations (MICE) algorithm39 to impute the missing data. One 140 
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hundred datasets were created based on the known information to obtain different imputed 141 

values. 142 

Among the continuous predictors, age, DBP, eGFR, and TC levels tended to be linearly 143 

associated, whereas the remaining variables were more likely to be non-linearly associated with 144 

diabetes incidence (predictors selected in the final model are shown in Supplemental Figure 145 

1), after assessing non-linearity using restricted cubic splines (rcs function from the rms 146 

package) and Akaike’s information criterion (AIC function from the stats package). The rcs 147 

function was used to fit the nonlinear regression models by setting up special attributes (such 148 

as knots and nonlinear term indicators). The AIC evaluates how well a model fits the data 149 

(a smaller value of AIC is better).40 Pooled β coefficients were estimated over the imputed 150 

datasets (fit.mult.impute function from the Hmisc package). All analyses were performed using 151 

R, version 4.2.0 (R Foundation for Statistical Computing, Vienna, Austria).41 152 

 153 

2.5  Model validation 154 

The final models were developed in the entire sample (eight areas) and evaluated via an 155 

internal validation of the JPHC Study dataset. The J-ECOH Study dataset was used for external 156 

validation. For the internal validation, we assessed the discrimination of the prediction models 157 

by calculating the area under the receiver operator characteristic (ROC) curve (AUC; also 158 

known as C-statistic) 40,42 using the roc function from the pROC package. Bootstrapping was 159 

used to quantify the optimism of our prediction models and to obtain optimism-corrected 160 

performance estimates (the number of bootstrap iterations was 1000). Optimism-corrected 161 

performance was calculated as optimism-corrected performance = apparent performance in the 162 

original sample − optimism, where optimism = bootstrap performance − test performance).42 163 

An AUC value of 0.5 indicates that the model is no better than random chance, while a value 164 
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of 1 indicates that the model perfectly distinguishes cases and non-cases. We assessed the 165 

calibration (the agreement of observed outcomes with the predicted risk) of the prediction 166 

models by creating calibration plots using the val.prob.ci.2 function from the 167 

CalibrationCurves package. Apparent AUCs and calibration plots were estimated using a 168 

stacked dataset that stacks the 100 imputed data sets into a single data set.42 Optimism-169 

corrected AUCs were estimated within each imputed data set and averaged over 100 imputed 170 

data sets to obtain summary results.42 171 

In the absence of a sufficiently large sample size, a random split sample approach or a non-172 

random split sample approach is likely to provide unstable validation results. Therefore, to 173 

validate prediction models in different settings, we performed the internal-external cross-174 

validation in the JPHC Diabetes Study (Supplemental Figure 2), as recommended by 175 

Steyerberg and Harrell.42,43 For the internal-external cross-validation, the model development 176 

was performed in 7 areas by sequentially dropping one area at a time. Then, the models were 177 

validated in the omitted area by calculating AUC using the roc function from the pROC 178 

package. 179 

For external validation, the discrimination and calibration performances of the developed 180 

models also used AUCs (roc function from the pROC package) and calibration plots 181 

(val.prob.ci.2 function from the CalibrationCurves package). In addition, to adjust the predicted 182 

risks for the validation cohort, we estimated the correction factor by using the function 183 

odds_adjust from the predtools package. 184 

All analyses for model validation were conducted in each imputed dataset, and validation 185 

parameters were averaged to obtain pooled results.  186 

To understand the impact on participants who did not participate in the follow-up survey, 187 

sensitivity analyses were also performed for the JPHC Diabetes Study and the J-ECOH Study. 188 
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Sensitivity analyses included all participants without diabetes at baseline. MICE was also used 189 

to impute missing data and 100 datasets were created based on known information to obtain 190 

different imputed values. Since people who did not participate in the 5-year follow-up survey 191 

could not determine whether they had diabetes, we counted the status of the patients in 100 192 

datasets after imputation. If they were considered to have diabetes in more than 50 datasets, 193 

they were diagnosed with diabetes, otherwise, they were not. The average of probability was 194 

used to create the calibration plot. 195 

 196 

2.6  Model presentation 197 

The models were presented as formula based on the logistic regression coefficients. 198 

Thereafter, the risk score was calculated using an Excel spreadsheet (Microsoft; Redmond, WA, 199 

USA) created according to the formula (eMaterial: DM_model_calculations.xlsx). In addition, 200 

the study followed the Transparent Reporting of a multivariable prediction model for 201 

Individual Prognosis Or Diagnosis (TRIPOD) statement44 to improve the transparency and 202 

quality of reporting of these prediction models. 203 

 204 

3.  Results 205 

The characteristics of the JPHC Study participants are presented in Table 1 and 206 

Supplemental Table 1. At the 5-year follow-up, 707 (6.4%) new diabetes cases were recorded. 207 

The median age was 63 years, and the number of women was 7377 (67.1%). People tended to 208 

exercise more than 2 hours a day (43.7%) rather than less than half an hour (12.6%). 209 

Approximately 11.2% of the participants had a family history of diabetes. Missing values were 210 

observed for 12 predictors in the derivation cohort. FPG was the variable with the most missing 211 

values in the data set, 7131 (64.9%). The mice package was used to perform multiple 212 
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imputations for the missing values. In total, 8896 of the required 164,790 values (5.4%) were 213 

needed to impute for the final analysis. 214 

Characteristics of the J-ECOH Study participants are presented in Table 1. There were 215 

fewer women (15.6 %), and approximately 17.6% of participants had a family history of 216 

diabetes in the J-ECOH study. There were 673 (5.9%) new diabetes cases at the 5-year follow-217 

up. We also compared the baseline characteristics of participants who were not included in the 218 

final analysis of the JPHC Diabetes Study and the J-ECOH Study and found that they had 219 

similar characteristics to the analyzed participants (Supplemental Table 3). 220 

Table 2 shows the differences in parameters between participants with and without 221 

diabetes and the relationship between risk factors and type 2 diabetes risk. There was little 222 

difference in age between participants with and without incident diabetes; however, there was 223 

a higher proportion of men among those with incident diabetes than among those without it. 224 

The risk of diabetes decreased with increased walking time. In addition, participants with 225 

incident type 2 diabetes had a family history of diabetes more frequently. For continuous 226 

variables (BMI, SBP, DBP, and the levels of ALT, AST, GGT, TC, FPG, and HbA1c), the 227 

median values were higher in the diabetes group than in the non-diabetes group. In contrast, 228 

HDL levels tended to be lower in those with incident diabetes than in those without diabetes.  229 

Finally, sex, BMI, family history of DM, and DBP were selected for Model 1, family 230 

history of DM and HbA1c for Model 2, and family history of DM, HbA1c, and FPG for Model 231 

3. For internal-external cross-validation, the AUCs of Model 1 ranged from 0.532 to 0.723, the 232 

AUCs of Model 2 ranged from 0.742 to 0.851, and the AUCs of Model 3 ranged from 0.807 to 233 

0.895 (Figure 2). For the internal validation of the final models, the model performance is 234 

shown in Figure 2. The AUC of Model 1 was 0.643, that of Model 2 yielded an AUC of 0.786, 235 

and that of Model 3 had an AUC of 0.845. After bootstrap optimism correction, the AUCs 236 
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slightly decreased to 0.639, 0.785, and 0.844, respectively. The discriminative ability of each 237 

model was confirmed in the J-ECOH Study; the AUCs were 0.692, 0.831, and 0.874 in Models 238 

1,2, and 3, respectively.  239 

The calibration curves (Figure 3) indicated that the predicted and empirical probabilities 240 

were close to each other, indicating that the prediction models fitted the data well in the 241 

development cohort. As shown in Figure 3, the probability of diabetes in high-risk participants 242 

was overestimated in Models 1 and 3 in the validation cohort. The extent of agreement between 243 

the observed outcomes and predicted risk in Model 2 was better than that in Models 1 and 3 in 244 

the validation cohort.  245 

The predictive performance did not materially change when a family history of diabetes 246 

was defined as the presence of diabetes in a family member, regardless of the degree of the 247 

relationship (Supplemental Table 2; Supplemental Figure 4). In addition, the calibration 248 

plots in the validation cohort remained unchanged after the intercept adjustments 249 

(Supplemental Figure 5). After a sensitivity analysis that included participants who did not 250 

participate in the follow-up survey, the AUCs in the JPHC Diabetes Study changed to 0.631, 251 

0.764, and 0.848, and those in the J-ECOH Study changed to 0.676, 0.834, and 0.874 in models 252 

1, 2, and 3, respectively (Supplemental Figure 3). The calibration performance did not 253 

improve in the sensitivity analysis, as shown in Supplemental Figure 6.  254 

Table 3 shows the content of the Excel spreadsheet used to obtain approximate predictions 255 

for the individuals. Using the medians for continuous predictors and the category with more 256 

participants for categorical variables, we calculated the average risk probability of DM to be 257 

3.94% in Model 1, 3.32% in Model 2, and 1. 54% in Model 3. Here, we provide an example 258 

using Model 2 to show how to obtain DM risk probability. A male with a family history of 259 
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diabetes demonstrated a BMI of 25 kg/m2, a diastolic blood pressure of 80 mmHg, and an 260 

HbA1c of 6%. By entering these data into Excel, the risk of DM was estimated to be 23.89%. 261 

 262 

4.  Discussion 263 

In this study, we developed three models to predict the risk of DM. All models showed 264 

good discrimination and calibration in internal validations. The internal-external cross-265 

validation indicated that these models showed similar discriminative ability across eight areas. 266 

To the best of our knowledge, this is the first diabetes risk score developed and validated using 267 

a nationwide population in Japan to predict the 5-year incidence of type 2 diabetes. For the 268 

non-invasive model, sex, BMI, family history of diabetes, and DBP were used to create a non-269 

invasive prediction model that showed good predictive ability (AUC=0.643) for the 5-270 

year incidence of type 2 diabetes. The risk models that included HbA1c showed better 271 

predictive ability, with an AUC of 0.786, and the predictive model performed best when both 272 

FPG and HbA1c levels were included (AUC=0.845), consistent with previous studies.18–21 273 

Although the AUC values decreased after optimism correction, all remained reliable, as also 274 

observed in the internal-external cross-validation and external validation cohort. The AUC 275 

values were higher in the J-ECOH Study than in the JPHC Diabetes Study, indicating that the 276 

developed models were generally good at discrimination. For the calibration performance, 277 

however, calibration plots of Models 1 and 3 were poor in the validation cohort. This indicates 278 

that the predicted probabilities overestimated the observed probabilities in the validation cohort. 279 

In comparison, Model 2 was well-calibrated in the J-ECOH Study. Since Model 2 tended to 280 

underestimate the observed probability in the highest decile of the predicted probability in the 281 

J-ECOH Study, the model should be used with caution, especially for those with a high 282 

predicted probability. 283 
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Several earlier studies developed diabetes prediction models for Japanese populations,17-284 

22 including the earliest known diabetes risk score model that was published in 2008 for 285 

residents of the Ibaraki prefecture.17 The model included BMI, blood glucose level, SBP, 286 

treatment for hypertension, TG levels, and smoking habits as predictors; however, it did not 287 

provide the AUC value. The Hisayama study included 1935 participants in the development 288 

model and 1147 in the validation model. However, all the participants were residents of a rural 289 

town, suggesting limited study generalizability.18 Two risk models were established in the 290 

Hisayama Study. Age, sex, family history of diabetes, abdominal circumference, BMI, 291 

hypertension, regular exercise, and current smoking were included in the noninvasive risk 292 

model, with an AUC of 0.700, which increased to 0.772 when FPG levels were added. The 293 

participants in the Toranomon Hospital Health Management Center Study 6 mainly involved 294 

apparently healthy Japanese government employees19; it included four risk scores. The AUC of 295 

the model that included age, sex, family history of diabetes, current smoking, and BMI was 296 

0.708, which increased to 0.836 when the FPG level was added, 0.837 when HbA1c was 297 

included, and 0.887 when both FPG and HbA1c levels were added. In the Japan Epidemiology 298 

Collaboration on Occupational Health Study (J-ECOH Study),20, 21 most participants were 299 

workers in large companies, and the risk predictors did not include a family history of diabetes. 300 

3- and 7-year predicted probabilities of DM were created using age, sex, smoking status, 301 

abdominal obesity, BMI, and hypertension status in the basic model or by adding FPG or 302 

HbA1c levels or adding both FPG and HbA1c levels. The AUC values ranged from 0.717 to 303 

0.893 for the 3-year incidence of DM and from 0.73 to 0.89 for the 7-year incidence of DM. 304 

The Aizawa Hospital Study22 included individuals who underwent general health examinations 305 

at the Health Center of Aizawa Hospital (development cohort, 2080 individuals; validation 306 

cohort, 2079 individuals). 307 
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Compared with these previous studies, we developed the model based on a population 308 

across multiple areas in Japan. Our models provided AUCs (unlike the Ibaraki Prefectural 309 

Health Study), included a family history of DM (unlike the J-ECOH Study), and were not 310 

limited to one region or occupation (unlike all the studies mentioned before). Therefore, we 311 

believe that our models are more representative of a Japanese population. We confirmed the 312 

validity of our prediction models with internal validation using bootstrapping and internal-313 

external cross-validation in the JPHC Diabetes Study. These procedures are recommended by 314 

Steyerberg and Harrell.42,43 In addition, we fully utilized the information of continuous 315 

variables such as HbA1c or FPG using the cubic spline function to model potential nonlinear 316 

relations between variables and to avoid information loss. Finally, our models showed good 317 

performance in distinguishing between individuals with and without the risk of developing 318 

diabetes. 319 

There are several possible explanations as to why the population of the J-ECOH study did 320 

not present good calibration performance. As shown in Table 1, the study participants of the J-321 

ECOH study were younger (median age: 51 vs. 63) and tended to have lower SBP (median: 322 

122 vs. 130) than those in the JPHC Diabetes Study. These factors are established risk factors 323 

for type 2 diabetes and these were not included in our prediction models, which may have 324 

affected the calibration performance. 325 

Our study had several limitations. First, approximately 51% (12964/25582) of the 326 

participants without diabetes in the JPHC Diabetes Study and 34% (5819/17164) of the 327 

participants without diabetes in the J-ECOH Study participated in the baseline survey but did 328 

not visit the 5-year follow-up survey, potentially causing selection bias. However, when we 329 

included those who did not complete the 5-year follow-up survey and imputed the outcomes 330 

using the MICE, the results did not materially change (Supplemental Figure 3). Second, we 331 
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did not conduct oral glucose tolerance tests to define the incidence of type 2 diabetes, possibly 332 

underestimating the incidence.24 Furthermore, although our internal validation via 333 

bootstrapping did not indicate any severe optimism, some optimism may exist because our 334 

bootstrapping procedure could not incorporate the uncertainty of the model selection and 335 

variable selection. In addition, we used the dataset from 20 years ago to create the prediction 336 

model, which may not be as accurate as data collected more recently. Finally, although our 337 

previous findings45 suggested that adding a genetic risk score might provide incremental model 338 

predictive performance, we did not include the genetic risk score in this study. 339 

   In conclusion, 5-year models for predicting the incidence of type 2 diabetes, with high 340 

discrimination and calibration, were developed and validated in this population-based study 341 

among a Japanese population. The invasive risk model with only HbA1c provides a tool for 342 

the targeted selection of patients with the greatest need for intervention.  343 
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Table 1. Characteristics of participants in the JPHC Diabetes Study and the J-ECOH Studya 

Characteristica 

JPHC Diabetes Study (n= 10986)

Characteristica 

J-ECOH Study (n= 11,345) 

Value b 
Missing 

values, n (%)
Valueb 

Missing 

values, n (%)

Age (years)  63 (57–67) 0 Age (years)  51 (48–54) 0 

Women 7377 (67.1%) 0 Women 1,773 (15.6 %) 0 

BMI (kg/m2) 23.5 (21.5–25. 6) 23 (0.2) BMI (kg/m2) 23.2 (21.4–25.3) 0 

Walking time (hours per 

day) 
  

Leisure-time physical 

activity (minutes per 

month) 

0 (0–84) 391 (3.4) 

≤0.5 hours 1379 (12. 6%) 130 (1.2)    
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0.5–1 hour 2322 (21.1%)   

1–2 hours 2349 (21.4%)   

≥2 hours 4806 (43.7%)   

Family history of diabetes 1225 (11.2%) 0 Family history of diabetes 1,996 (17.6%) 0 

SBP (mmHg) 130 (119–140) 6 (0.1) SBP (mmHg) 122 (113–130) 0 

DBP (mmHg) 78 (70–84) 6 (0. 1) DBP (mmHg) 79 (72–84) 0 

HDL (mg/dL) 57 (48–67) 1 (0.0) HDL (mg/dL) 55 (46–65) 0 

TC (mg/dL) 207 (186–230) 1 (0.0) TC (mg/dL) 201 (181–221) 16 (0.1) 

FPG (mg/dL) 93 (88–100) 7131 (64.9) FPG (mg/dL) 98 (92–105) 0 

HbA1c (%)  5.5 (5.1–5.7) 34 (0.3) HbA1c (%)  5.5 (5.3–5.7) 0 
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ALT (IU/L)  18 (15–24) 7 (0. 1) ALT (IU/L)  21 (16–29) 0 

AST (IU/L) 22 (19–27) 1 (0.0) AST (IU/L) 21 (18–26) 0 

GGT (IU/L) 21 (15–33) 7 (0. 1) GGT (IU/L) 30 (20–51) 0 

eGFR (mL/min/1.73 m2)  73.8 (63.4–82.5) 1549 (14.1) eGFR (mL/min/1.73 m2) 78.8 (69.7–89.4) 5549 (48.9) 

5-year outcome 707 (6.4%) 0 5-year outcome 673 (5.9%) 0 

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; DBP, diastolic blood pressure; eGFR, 

estimated glomerular filtration rate; FPG, fasting plasma glucose; GGT, γ-glutamyl transferase; HbA1c, glycated hemoglobin; HDL, high-density 

lipoprotein; SBP, systolic blood pressure; TC, total cholesterol.  

aCharacteristics were collected at baseline. 

bContinuous variables are medians (interquartile ranges) and categorical variables are numbers (percentages).  
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Table 2. Distribution of study variables by DM status in the JPHC Diabetes Study. 

Characteristicsb 

Participants 

without incident 

DMa 

(n = 10279) 

Participants with 

incident DMa 

(n = 707) 

Odds ratio (95% CI) c,d 

Univariate Model 1 Model 2 Model 3 

Agee (years) 63 (57–67) 64(59–68) 1.23 (1.09–1.38) – – – 

Sex (%)       

  Female 6980 (95%) 397 (5%) 1 (ref.) 1 (ref.) – – 

  Male 3299 (91%) 310 (9%) 1.65 (1.42–1.93) 1.74 (1.49–2.04) – – 

BMI (kg/m2) 23.5 (21.5–25.5) 24.5 (22.4–26.7) 1.78 (1.45–2.18) 1.73 (1.41–2.13) – – 

Walking timee (hours per 

day) 
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≤0.5 hour 1278 (93%) 101 (7%) 1.22 (0.97–1.54) – – – 

0.5–1 hour 2164 (93%) 158 (7%) 1.13 (0.92–1.38) – – – 

1–2 hours 2196 (93%) 153 (7%) 1.08 (0.88–1.32) – – – 

≥2 hours 4514 (94%) 292 (6%) 1 (ref.) – – – 

Family history of diabetes 

(%) 

      

  Yes 1082 (88%) 143 (12%) 2.16 (1.78–2.62) 2.26 (1.86–2.75) 1.64 (1.33–2.03) 1.56 (1.23–1.98) 

  No 9197 (94%) 564 (6%) 1 (ref.) 1 (ref.) 1 (ref.) 1 (ref.) 

SBPe (mmHg) 130 (118–140) 134 (124–144) 1.44 (1.29–1.60)  – – 

DBP (mmHg) 78 (70–84) 80 (70–86) 1.19 (1.08–1.32) 1.04 (0.94–1.16) – – 
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HDLe (mg/dL) 57 (48–68) 53 (45–64) 0.60 (0.49–0.74) – – – 

TCe(mg/dL) 207 (186–229) 211 (188–232) 1.13 (1.02–1.25) – – – 

FPG (mg/dL) 93 (88–99) 106 (97–115) 4.16 (2.83–6.10) – – 2.95 (1.98–4.39) 

HbA1c (%)  5.4 (5.1–5.7) 5.9 (5.6–6.1) 3.50 (2.91–4.22) – 3.44 (2.86–4.13) 2.63 (2.17–3.19) 

ALTe (IU/L)  18 (14–24) 21 (16–28) 1.58 (1.37–1.83) – – – 

ASTe (IU/L) 22 (19–26) 24 (20–29) 1.54 (1.32–1.79) – – – 

GGTe (IU/L) 21 (15–32) 26 (18–43) 2.07 (1.77–2.42) – – – 

eGFRe (mL/min/1.73 m2) 73.8 (63.4–82.5) 73.5 (63.4–83.0) 0.98 (0.92–1.06) – – – 

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CI, confidence interval; DBP, diastolic 

blood pressure; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; FPG, fasting plasma glucose; GGT, γ-glutamyl transferase; 

HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; ref., reference; SBP, systolic blood pressure; TC, total cholesterol. 

aContinuous variables are shown as medians (interquartile ranges) and categorical variables as numbers (percentages) unless otherwise indicated. 
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bA backward stepwise variable selection method was used to select the variables to be included in the prediction model.  

cOdds ratios were estimated using logistic regression models after multiple imputations. Model 1 included sex, BMI, family history of DM, and 

DBP. Model 2 included a family history of DM, and HbA1c. Model 3 included a family history of DM, FPG level and HbA1c. 

dInterquartile range (0.75 vs. 0.25 quantile) odds ratios are shown for continuous variables. For example, odds ratio for age compares the 3rd 

quartile with the 1st quartile of age. Odds ratios for categorical predictors were compared between each group and the reference group (the smallest 

group). 

eNot included in each model after the backward stepwise variable selection method.  
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Table 3. Prediction Model and Calculation Table.  

Predictorsa Variables Units 

Coefficient  
Average 

valuesc 

Coefficient × Average values Your patient 

(Example using 

Model 2)d 
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Constant Intercept – -1.47 -7.96 -4.11 1 -1.47 -7.96 -4.11 1 -7. 96 

Sex Female 0/1 -0.56   1 -0.56 – – 0 – 

BMI BMI   kg/m2  -0.08 – – 23.50 -1.83 – – 25 – 

 (BMI-

19.0)3+ 

 0.00 – – 91.13 0.45 – – 216.00 – 

 (BMI-

22.4)3+ 

 -0.01 – – 1.33 -0.02 – – 17.58 – 
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 (BMI-

24.7)3+ 

 0.01 – – 0.00 0.00 – – 0.03 – 

 (BMI-

28.9)3+ 

 -0.00 – – 0.00 0.00 – – 0.00 – 

Family 

history of 

DM 

Family 

history 

of DM 

0/1 0.82 0.50 0.45 0 0.00 0.00 0.00 1 0.50 

DBPb DBP mm Hg 0.00 – – 78 0.24 – – 80 – 

HbA1cb HbA1c % – 0.77 0.44 5.5 – 4.24 2.43 6.0 4.63 

   (HbA1c-

4.9) 3+ 

 – 1.59 1.44 0.2 – 0.34 0.31 1.33 2.11 
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 (HbA1c-

5.5) 3+ 

 – -3.49 -3.17 0.0 – 0.00 0.00 0.13 -0.44 

 (HbA1c-

6.0) 3+ 

 – 1.90 1.73 0.0 – 0.00 0.00 0.00 0.00 

FPGb FPG mg/dl – – -0.03 93 – – -3.02 100 – 

 (FPG -

81) 3+ 

 – – 0.00 1728.0 – – 0.07 6859.00 – 

 (FPG -

88) 3+ 

 – – 0.00 125.00 – – 0.16 1728.00 – 

 (FPG -

93) 3+ 

 – – -0.00 0.00 – – 0.00 343.00 – 



Accepted Version

 

36 

 

 (FPG -

99) 3+ 

 – – 0.00 0.00 – – 0.00 1.00 – 

 (FPG -

112) 3+ 

 – – -0.00 0.00 – – 0.00 0.00 – 

      Probabili

ty 

3.94% 3.32% 1.54%  23.89% 

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; DM, diabetes mellitus; FPG, fasting plasma glucose; HbA1c, glycated 

hemoglobin. 

aVariables were selected using the backward stepwise method, and multiple imputations by chained equations (MICE) method was used to handle 

missing data. 

bKnots were placed at the 10th, 50th, and 90th percentiles for HbA1c; at the 5th, 35th, 65th, and 95th percentiles for BMI, and at the 5th, 27.5th, 

50th, 72.5th, and 95th percentiles for FPG. 

cTo calculate the average risk probability of the DM. The medians were used for continuous predictors. The category with more participants were 

used for categorical variables. 
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dAn example is provided. A male with a family history of diabetes, diastolic blood pressure of 80 mmHg, BMI of 25 kg/m2, and HbA1c level of 

6.0%.  

After pooling the coefficients in the final multivariable model, the formula for the five-year incidence of type 2 diabetes can be summarized as 1/ 

[1+exp (−L)],  

where L in Model 1 = −1. 4677114 − 0.55636706 × [Sex = "female"] − 0.077979787 × BMI + 0.0048939561 × (BMI − 19.0)3 − 0.014293364 × 

(BMI − 22.4)3 + 0.010584929 × (BMI − 24.7)3 − 0.0011855209 × (BMI − 28.9)3 + 0.81638492 × [Family history of diabetes = "YES"] + 

0.0030199043 × DBP; 

where L in Model 2 = −7.9560656 + 0.49588037 × [Family history of diabetes = "YES"] + 0.77107227 × HbA1c + 1.5861765 × (HbA1c − 4.9)3 

− 3. 4895883 × (HbA1c − 5.5)3 + 1.9034118 × (HbA1c – 6.0)3; 

where L in Model 3 = −4. 1097962 + 0. 44533254 × [Family history of diabetes = "YES"] + 0.44201803 × HbA1c + 1.4426444 × (HbA1c − 4.9)3 

− 3.1738177 × (HbA1c − 5.5)3 + 1.7311733 × (HbA1c – 6.0)3 − 0.032485574 × FPG + 0.000040103209 × (FPG − 81)3 + 0.0012713229 × (FPG 

− 88)3 − 0.0028839757 × (FPG − 93)3 + 0.001772353 × (FPG − 99)3 − 0.00019980342 × (FPG − 112)3. 

Notes: in L,  

1. Square brackets [c] = 1 if the participant falls into category c; [c] = 0 otherwise.  

2. Round brackets indicate (x) + = x if x > 0, and (x) + = 0 otherwise.  
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3. Measurement units: BMI (kg/m2), DBP (mmHg), HbA1c (%), and FPG (mg/dL). 

4. Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin.
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Figure Legends 

Figure 1: Participant selection flow diagram for the development and validation cohorts.  

Figure 2. Receiver operating characteristic curves for the development and validation cohorts. 

Abbreviations: AUC, the area under the receiver operating characteristic (ROC) curve; BMI, body mass index; DBP, diastolic blood pressure; 

FPG, fasting plasma glucose; HbA1c, glycated hemoglobin. 

Model 1: included sex, BMI, a family history of DM, and DBP. 

Model 2: included a family history of DM and HbA1c 

Model 3: included a family history of DM, HbA1c, and FPG 

C-statistic (AUC): in the JPHC Diabetes Study, Model 1 = 0.643, Model 2 = 0.786, and Model 3 = 0.845; after optimism correction, the AUCs 

decreased to 0.639, 0.785, and 0.844, respectively. The number of bootstrap iterations was 1000. After internal-external cross-validation, the 

AUCs of each area in Model 1 = 0.629, 0.688, 0.634, 0.723, 0.633, 0.532, 0.595, and 0.686, respectively; the AUCs of each area in Model 2 = 

0.823, 0.772, 0.754, 0.846, 0.851, 0.806, 0.742, and 0.798, respectively; the AUCs of each area in Model 3 = 0.855, 0.853, 0.817, 0.895, 0.884, 

0.807, 0.809, and 0.868, respectively. The AUCs in the J-ECOH Study were 0.692, 0.831, and 0.874 in Models 1, 2, and 3, respectively. 

Figure 3. Calibration plots to show relations between predicted and observed probabilities in the development and validation cohorts. 

Abbreviations:  BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin. 
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Model 1: included sex, BMI, a family history of DM, and DBP. 

Model 2: included a family history of DM and HbA1c 

Model 3: included a family history of DM, HbA1c, and FPG 

Calibration plots were created to graphically assess the agreement of the mean observed risk with the mean predicted risk according to the 

deciles of the predicted risk. Ideal: ideal line for the prediction model. Flexible calibration (RCS): "RCS" generates a flexible calibration curve 

based on restricted cubic splines. CL flexible: 95% confidence limits for the flexible calibration curve with dashed lines. Grouped observations: 

mean predicted probability and observed proportion of diabetes incidence in each of the deciles (ten groups of equal size). 
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