DOCTORAL THESIS

Clinical impact of cigarette smoking on the outcomes of allogeneic hematopoietic stem cell transplantation: A multicenter retrospective study

(喫煙が同種造血幹細胞移植に与える影響:多施設共同後方視的研究)

March, 2024

(2024年3月)

Takuma Ohashi

大橋 卓馬

Department of Stem Cell and Immune Regulation Yokohama City University Graduate School of Medicine

横浜市立大学 大学院医学研究科 医科学専攻 幹細胞免疫制御内科学

(Doctoral Supervisor : Hideaki Nakajima, Professor)

(指導教員:中島 秀明 教授)

Check for updates ARTICLE Clinical impact of cigarette smoking on the outcomes of allogeneic hematopoietic stem cell transplantation: a multicenter retrospective study

Takuma Ohashi 👩¹, Jun Aoki¹, Taiki Ando 🔞², Yasufumi Ishiyama², Yoshimi Ishii¹, Kazuho Miyashita¹, Yuki Nakajima¹, Takayoshi Tachibana 📭², Maki Hagihara³, Kenji Matsumoto³, Masatsugu Tanaka², Heiwa Kanamori², Shin Fujisawa^{1 M}, Hideaki Nakajima 10³ and Yokohama Cooperative Study Group for Hematology (YACHT)

© The Author(s), under exclusive licence to Springer Nature Limited 2022

Smoking is associated with a high risk for different diseases including respiratory tract infections in immunocompetent patients. However, data about the effects of cigarette smoking on the outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT) are limited. Therefore, we retrospectively investigated 608 patients aged \geq 20 years with hematological disorders who received their first allo-HSCT at our group of hospitals between 2000 and 2015, and evaluated the impact of cigarette smoking before allo-HSCT on clinical outcomes by dividing patients into two groups according to the Brinkman index (BI) (nonsmokers or light smokers [BI: 0-500] and heavy smokers [BI: ≥ 500]). Multivariate analyses showed that heavy smoking was associated with a high 5-year cumulative incidence of chronic graft-versus-host disease (cGVHD) (hazard ratio [HR]: 1.73, 95% confidence interval [CI]: 1.15–2.61, p < 0.01). The 5-year overall survival (HR: 1.16, 95% CI: 0.86–1.58, p = 0.33) and disease-free survival (HR: 1.12, 95% CI: 0.83-1.52, p = 0.45) were similar between the two groups. Hence, cigarette smoking is correlated with cGVHD, although prospective studies must be conducted to further verify this result.

Bone Marrow Transplantation (2022) 57:1124-1132; https://doi.org/10.1038/s41409-022-01678-7

INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is widely used to treat patients with hematological disorders. Although it is commonly used, transplantation-related mortality and morbidity rates remain high. Pulmonary complications can occur after transplantation and can be fatal [1, 2]. However, data about the effects of cigarette smoking on transplantation outcomes are limited. Previous studies have reported that smoking is correlated with posttransplant pulmonary complications. However, they are limited to a subset of cases, and the clinical effects of smoking on pulmonary and other posttransplant complications have not been fully explored [3-6]. Increasing number of studies have shown that smoking impairs immune function, exacerbates chemotherapy-related toxicity, and increases the risk of recurrence and secondary malignancies. However, information about the effects of smoking history on transplantation-related complications is limited [7-12]. Therefore, we conducted a multicenter retrospective study to evaluate the correlation between smoking history, respiratory function and posttransplant outcomes.

METHODS Study design

This multicenter, investigational study used the clinical research data of the Yokohama Cooperative Study Group for Hematology (YACHT). It included patients aged ≥20 years who initially received allo-HSCT at Yokohama City

University Medical Center, Kanagawa Cancer Center, and Yokohama City University Hospital between 2000 and 2015. Data about the demographic characteristics of patients, such as smoking history, results of pulmonary function test (PFT), and pulmonary complications, were collected. Information regarding smoking was obtained from the medical history record. Low-risk disease was defined as acute myeloid leukemia (first/ second remission), acute lymphoblastic leukemia (first remission), chronic myeloid leukemia (first chronic phase), lymphoma (remission), refractory and aplastic anemia, and myelodysplastic syndrome (refractory anemia/ refractory anemia with ringed sideroblasts). High-risk disease was defined as the other conditions that are not included in low-risk disease.

The stem cell sources were classified as follows: related bone marrow, unrelated bone marrow, related peripheral blood stem cells, and cord blood. The donor match status was determined according to donor-recipient human leukocyte antigen (HLA) compatibility. The conditioning regimens were categorized as myeloablative and reduced intensity [13]. Acute graft-versus-host disease (GVHD) was defined according to the consensus criteria [14]. Meanwhile, chronic GVHD (cGVHD) was classified according to the standard criteria [15]. Previous studies have shown that a Brinkman index (BI; average daily smoking volume [number of cigarettes] × years of smoking) of >400 indicates a high risk of developing lung cancer, and a BI of >600 suggests chronic obstructive pulmonary disease and respiratory disease. Therefore, we divided patients into two groups according to BI: nonsmokers or light smokers (BI: 0–500, n = 520; defined as low BI) and heavy smokers (BI: \geq 500, n = 88; defined as high BI). The transplantation outcomes of the two groups including PFT results were compared. All pulmonary function values, except the forced expiratory volume in 1 s (FEV1)-to-forced vital

Received: 12 October 2021 Revised: 28 March 2022 Accepted: 5 April 2022 Published online: 3 May 2022

¹Department of Hematology, Yokohama City University Medical Center, Yokohama, Japan. ²Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan. 3Department of Hematology and Clinical Immunology, Yokohama City University School of Medicine, Yokohama, Japan. 🖾email: shin_fji@yokohama-cu.ac.jp

Table 1. Patient characteristics.

	0 ≦ BI < 500 <i>N</i> (%)	BI≧ 500 <i>N</i> (%)	p value
Age, mean (range)	44.6 y (20–68)	53.9 y (37–67)	<0.01
Sex			<0.01
Μ	267 (51)	80 (91)	
F	253 (49)	8 (9)	
PS			0.63
0	490 (94)	82 (93)	
1	30 (6)	6 (7)	
HCT-CI			0.43
0–3	469 (90)	77 (88)	
4–5	34 (7)	9 (10)	
6-	17 (3)	2 (2)	
Diagnosis			
AML	289 (56)	60 (68)	
ALL	120 (23)	7 (8)	
MDS	44 (9)	11 (12)	
ML	26 (5)	7 (8)	
MPN	9 (2)	2 (2)	
CML	28 (5)	2 (2)	
Other	3 (<1)	0 (0)	
Disease risk			<0.01
Standard risk	371(71)	61 (69)	
High risk	149(29)	27 (31)	
Donor source			0.51
RBM	112 (22)	16 (18)	
RPB	75 (14)	11 (12)	
UBM	220 (42)	41 (48)	
UCB	113 (22)	20 (22)	
Conditioning therapy		0.02	
MAC	352 (68)	47(53)	
RIC	168 (32)	41(47)	
HLA (except CBT)		0.95	
Matched	251 (48)	40 (45)	
Mismatched	156 (30)	28 (32)	
GVHD prophylaxis		0.88	
CyA±MTX	174 (33)	29 (34)	
$TAC \pm MTX$	346 (67)	59 (66)	
ABO disparity			0.78
Major mismatch	141 (27)	24 (27)	
Minor mismatch	149 (29)	21 (24)	
Both	40 (8)	6 (6)	
TBI ≧2 Gy			0.76
Yes	429 (83)	72 (82)	
No	91 (17)	16 (18)	

BI Brinkman index, *M* male, *F* female, *PS* performance status, *HCT-CI* hematopoietic cell transplant-comorbidity index, *AML* acute myeloid leukemia, *ALL* acute lymphoblastic leukemia, *MDS* myelodysplastic syndrome, *ML* malignant lymphoma, *MPN* myeloproliferative neoplasms, *CML* chronic myeloid leukemia, *RBM* related bone marrow, *RPB* related peripheral blood, *UBM* unrelated bone marrow, *UCB* umbilical cord blood, *MAC* myeloablative conditioning, *RIC* reduced-intensity conditioning, *HLA* human leukocyte antigen, *TBI* total body irradiation.

Table 2. Characteristics of smoking.

	0 ≦ BI < 500 N (%)	BI ≧ 500 <i>N</i> (%)	p value
Cigarettes smoked per day			
0	342 (66)	0	
1–9	22 (4)	0	
10–19	73 (14)	5 (6)	
20–39	80 (15)	65 (74)	
≧40	3 (1)	18 (20)	
Brinkman Index			
0	342 (66)		
1–299	132 (25)		
300–499	46 (9)		
500–799		54 (61)	
800–999		16 (19)	
≧1000		18 (20)	
Time since quitting smoking			
<1 yr (Current smoker)	63 (12)	31 (35)	<0.01
1–10 yr	59 (11)	36 (41)	<0.01
10–19 yr	18 (3)	9 (10)	<0.01
≧20 yr	22 (4)	2 (2)	0.42
Unknown	16 (3)	10 (11)	

1125

Brinkman Index: average daily smoking volume [number of cigarettes] \times years of smoking.

Current smoker: patients who smoked until the year of transplantation.

capacity ratio, were expressed as percentage of the predicted values according to published equations, unless otherwise specified. The diffusing capacity for carbon monoxide (DLCO) measurements was corrected for hemoglobin levels obtained at the closest time to the assessment. PFT was routinely performed at pretransplantation and approximately 1-year post transplantation.

Statistical definitions and analytical methods

The baseline characteristics of patients and the incidence of GVHD were compared between the smoking groups using Fisher's exact test for categorical data and the Mann–Whitney U test for continuous variables. The Kaplan-Meier technique was used to analyze the probability of overall survival (OS) and disease-free survival (DFS). To compare OS and DFS, the log-rank test and Cox proportional hazard model were utilized for univariate and multivariate analyses, respectively. For the analyses of OS, death from any cause was considered an event, and the survivors were censored during the last follow-up. For the analyses of DFS, relapse or death was considered an event. The cumulative incidences of relapse, nonrelapse mortality (NRM), and GVHD were evaluated using the Fine-Gray model for univariate and multivariate analyses. In the NRM analysis, relapse was considered a competing risk. We applied the backward-stepwise selection algorithm and retained the statistically significant variables, in addition to those that were affected in the multivariate analysis in previous reports. A p value of <0.05 was considered statistically significant. In the secondary analyses, the Mann-Whitney U test was used to examine the association between smoking dose and pulmonary function after 1 year. This study was conducted after it was approved by the institutional review board of each institution. All statistical analyses were performed using EZR version 1.54, a graphical user interface for R version 3.5.2 [16].

RESULTS

Clinical characteristics of participants

In total, 608 patients were eligible for the study. Table 1 shows the characteristics of patients who were divided into the low- and

Fig. 1 PFT results at pretransplantation and 1 year post transplantation. Data were presented using orthodontic information (**a** % VC **b** FEV₁ **c** DLCO). The FEV₁, %VC, and DLCO were expressed as percentage of the predicted values. PFT pulmonary function test, FEV₁ forced expiratory volume in 1 s; %VC percentage of vital capacity, DLCO diffusing capacity for carbon monoxide.

high-BI groups. The mean ages of the high and low-BI groups were 54 and 45 years, respectively. Among 88 patients with high Bl, 91 (%) patients were male, 31 (%) patients had high-risk disease, and 87 (%) patients used reduced-intensity conditioning (RIC) regimen. The two groups did not significantly differ in terms of donor HLA and ABO matching, performance status (PS), hematopoietic cell transplant-comorbidity index (HCT-CI), and stem cell source. Table 2 shows smoking status of the patients. Most patients in the High-BI group smoked more than 20 cigarettes a day, and a higher proportion smoked up to 1 year before transplantation. Figure 1 depicts the results of PFT at pretransplantation and 1 year post transplantation. The percentage of vital capacity (%VC) and DLCO (%) was not significantly different between the low- and high-BI groups either at pre- or posttransplantation (Fig. 1a, c). In contrast, the high-BI group had a lower FEV₁ (%) than the low-BI group both at pre- and posttransplantation (p < 0.01) (Fig. 1b). The time-dependent changes of %VC, DLCO (%), and FEV₁ (%) between pre- or posttransplantation did not significantly differ between the two groups. The median follow-up period after allo-HSCT was 1971 days.

OS, DFS, and NRM

The high-BI group had a lower 5-year OS (52% vs. 39%, p = 0.01, Fig. 2a) and 5-year DFS (47% vs. 37%, p = 0.03, Fig. 2b) than the low-BI group by univariate analysis. However, the 5-year NRM did not significantly differ between the low BI and the high BI groups (24% and 34%, respectively, p = 0.11) (Fig. 2c). Similarly, there was no significant difference in terms of the 5-year relapse rate between the low-BI and the high BI groups (35% and 40%, respectively, p = 0.19) (Fig. 2d).

Fig. 2 Survival probability and cumulative incidence of relapse and GVHD. a Probability of OS. b Probability of DFS. c Cumulative incidence of NRM. d Cumulative incidence of relapse. e Cumulative incidence of acute GVHD. f Cumulative incidence of chronic GVHD. OS overall survival, DFS disease-free survival, NRM nonrelapse mortality, GVHD graft-versus-host disease.

Incidence of GVHD

The absolute 5-year incidence of acute GVHD (aGVHD) did not significantly differ between the low-BI and the high BI groups (40% and 35%, respectively, p = 0.47) (Fig. 2e). In contrast, the absolute 5-year incidence of cGVHD was significantly lower in the low-BI group than in the high BI group (49% and 57%, respectively, p < 0.01) (Fig. 2f). We initially speculated that smoking is associated with lung complications including cGVHD of the lungs. Interestingly, however, there was no significant association between smoking and the incidence of cGVHD in the lungs (21% and 24%, respectively, p = 0.19) (Supplementary Fig. 1a) and between smoking and the incidence of bronchopneumonia (15% and 23%, respectively, p = 0.26) (Supplementary Fig. 1b).

We went on to analyze the difference of cGVHD incidence in 'current smoker (patients who kept smoking until the year of transplantation) vs. non-current smoker' or 'smoker vs. never-smoker (BI = 0)' settings. Comparison of current vs. non-current smokers revealed no statistical difference in cGVHD both in low-BI and high-BI groups (Supplementary Fig. 2a–c). It should be noted, however, that the incidence of cGVHD tended to be higher in current smokers, although not statistically significant (p = 0.13), among high-BI group, suggesting that early cessation of smoking might be beneficial for patients with high-BI (Supplementary Fig. 2c). We have also compared the incidence of cGVHD by stratifying patients according to the time since smoking cessation (Supplementary Fig. 3a, b). Again, we observed a similar, statistically non-significant reduction of cGVHD incidence in non-current smokers with high BI, but not in those with low-BI. Comparison of smokers and neversmokers showed no difference in cGVHD incidence both in overall patients and low-BI group (Supplementary Fig. 4a, b).

Table 3. Cau	uses of death	ı after	HSCT.
--------------	---------------	---------	-------

	0 ≦ BI < 500 <i>N</i> (%)	BI ≧ 500 <i>N</i> (%)	p value
Documented infection			
Fungal	4 (1)	1 (1)	0.87
Bacterial	26 (5)	10 (11)	0.09
Viral	4 (1)	1 (1)	0.87
GVHD			
Acute	13 (3)	3 (3)	0.88
Chronic	4 (1)	1 (1)	0.87
Interstitial pneumonia	25 (5)	3 (3)	0.31
Relapse	109 (21)	21 (24)	0.67
Secondary malignancy	5 (1)	1 (1)	0.97
Rejection/poor graft function	6 (1)	2 (2)	0.58
Multi-organ failure	16 (3)	4 (5)	0.74
VOD/SOS	12 (2)	2 (2)	0.76
bleeding	7 (1)	3 (3)	0.31
Other	12 (2)	1 (1)	

HSCT hematopoietic stem cell transplantation, GVHD graft-versus-host disease, VOD veno-occlusive disease, SOS sinusoidal obstruction syndrome.

Cause of death

Table 3 shows the direct causes of death after HSCT. In total, 298 patients (n = 245 in the low-BI group and n = 53 in the high-BI group) died, and relapse was the most common cause of death. The high BI group was more likely to have a higher incidence of fatal bacterial infections. However, there were no significant differences between the low-BI and the high-BI groups in terms of the incidence of fatal interstitial pneumonia or cGVHD.

Univariate and multivariate analysis

Table 4 depicts the results of the univariate analysis of OS, DFS, NRM, and incidence of acute or chronic GVHD. Age \geq 50 years, low or high disease risk, donor source (RBM, RPB, UBM, or UCB), HCT-CI (low, intermediate, or high), history of lung infection before HSCT (yes or no), and BI were associated with OS and DFS. Furthermore, age > 50 years, low- or high-disease risk, donor source, and BI were correlated with the incidence of cGVHD.

Table 4 also shows the results of the multivariate analysis. In the analysis adjusted for age, disease risk, stem cell source, HCT-Cl, and lung infections, high Bl was not associated with a higher risk of OS (hazard ratio [HR]: 1.16, 95% confidence interval [Cl]: 0.9–1.6, p = 0.33) or DFS (HR: 1.12, 95% Cl: 0.8–1.5, p = 0.45). Similarly, in the analysis adjusted for age, HLA, stem cell source, HCT-Cl, and lung infections, smoking dose was not associated with a higher risk of NRM (HR: 1.04, 95% Cl: 0.6–1.9, p = 0.9). In the analysis adjusted for stem cell source and HLA, smoking dose was not correlated with a higher absolute 5-year incidence of acute GVHD (HR: 0.99, 95% Cl: 0.6–1.5, p = 0.95). In contrast, in the analysis adjusted for age, disease risk, stem cell source, and HLA, the low-BI group had a significantly lower absolute 5-year incidence of cGVHD than the high Bl group (HR: 1.73, 95% Cl: 1.2–2.6, p < 0.01).

Characteristics of cGVHD

Table 5 shows the characteristics of cGVHD divided according to low and high Bl. As described earlier, heavy smoking did not significantly increase the incidence of chronic lung GVHD (p =0.19). Instead, the incidence of cGVHD in skin was significantly higher in high Bl group, and cGVHD in mouth and gastrointestinal tract tended to be more frequent, although not statistically significant, in high Bl group. The extent of cGVHD as well as the frequency of patients requiring various immunosuppressive therapies for cGVHD were not significantly different between the two groups.

DISCUSSION

Smoking has been reported to be associated with a high incidence of malignancies and cardiac and pulmonary diseases [17]. Some studies have shown that smokers are at high risk for treatment-related mortality and disease recurrence. Others have reported smoking leads to an increased risk for early pulmonary complications after transplantation. On the other hand, some studies did not show such an association [3, 18, 19]. In this study, we demonstrated that heavy smoking was associated with a high risk for cGVHD. Sub-group analysis showed that only a skin cGVHD significantly increased in patients with high Bl. However, we noticed a slight, non-significant increase in cGVHD also in other organs such as mouth, gastrointestinal tract, and liver in high-BI group, and we speculate these small differences eventually led to an overall increase in 5-year incidence of cGVHD in high-BI patients. Of note, there was no difference in the severity and treatment of cGVHD between the low and high BI groups. It is also intriguing that heavy smoking did not affect the incidence of cGVHD in the lungs and pulmonary infections. This may suggest that chronic pulmonary inflammation induced by smoking does not serve as a major accelerator of cGVHD or infections in the lung.

Previous study has shown that smoking is correlated with a shorter survival after transplantation and a higher incidence of recurrence [3]. However, our study demonstrated that OS, DFS or relapse adjusted for age, disease risk, donor source, HCT-CI, and lung infection was similar between the high and low-BI groups. This could be attributed to the patient selection bias by which physicians did not allow patients with severe pulmonary dysfunction to undergo HSCT. This notion is, in fact, supported by the finding that posttransplant decline of %VC, FEV1% or DLco was not statistically different between patients with low-BI and high BI.

Previous study has shown the important role for B cells in the pathogenesis of chronic GVHD (cGVHD) and patients with cGVHD have elevated B-cell activating factor (BAFF) to B-cell ratios compared to patients without cGVHD [20]. On the other hand, human and mouse studies have shown that smoking increases BAFF levels not only in the lungs but also in other organs including the spleen [21, 22]. Taken together, we speculate that smoking activates B cells by increasing the level of BAFF, thereby increases the incidence of cGVHD. This notion may also explain the systemic effect of smoking on cGVHD, which increases the incidence of cGVHD in non-pulmonary site, such as skin. This hypothesis must be confirmed by future investigation.

cGVHD and pretransplantation pulmonary dysfunction are a risk factor for posttransplant respiratory failure [23]. Nonetheless, smoking itself has not been considered a risk for cGVHD. In this respect, the results from this study are remarkable, and therefore, we recommend that patients should quit smoking as soon as they decide to undergo transplantation. In addition, we should be cautious about cGVHD in patients with high BI after HSCT. According to a multivariate analysis showing a higher risk of mismatched donor and a lower risk of cord blood transplantation, if an HLA-identical sibling is not available, cord blood may be a favorable option to a mismatched family donor or an unrelated donor among patients with a high BI.

This study has some limitations. Considering its retrospective nature, some pulmonary complications might have been missed despite a detailed database and extensive chart review. For example, we could have picked up and analyzed only the first episode of multiple pulmonary events, and the incidence of late-onset pulmonary complications could have been underestimated. Further, we could not monitor the smoking status of patients after allo-HSCT,

Table 4. Univariate and Multivariable Analysis for Outcome.

Variables	Factors	OSª						
		Univariate	analysis			Multivaria	ble analysis	
		n	5yOS	95% CI	Р	HR	95% CI	Р
Age	<50	263	55.9%	0.50-0.61	<0.01	1		
	≧50	345	43.5%	0.33–0.45		1.34	1.05–1.71	0.05
Sex	Μ	347	49.8%	0.44–0.55	0.39			
	F	261	51.5%	0.45–0.57				
Disease risk	Low	432	62.3%	0.57–0.67	<0.01	1		
	High	176	32.2%	0.24–0.36		2.12	1.69–2.66	<0.01
Conditioning	MAC	399	51.0%	0.43–0.57	0.67			
	RIC	209	50.3%	0.45-0.55				
HLA	Match	270	53.6%	0.45–0.61	0.28			
	Mismatch	168	47.4%	0.41–0.53				
Donor	RBM	128	61.4%	0.52–0.69	0.01	1		
	RPB	86	47.7%	0.41–0.53		1.39	0.94–2.05	0.09
	UBM	261	46.4%	0.34–0.57		1.48	1.08–2.03	0.02
	UCB	133	46.6%	0.37–0.55		1.41	0.98–2.03	0.06
HCT-CI	0–3	548	52.9%	0.48–0.57	<0.01	1		
	4–5	43	31.7%	0.18–0.46		1.64	1.11–2.44	0.02
	6-	17	23.5%	0.07–0.45		1.62	0.92–2.85	0.09
Lung infection	Yes	52	20.2%	0.10-0.32	<0.01	2.48	1.78–3.45	<0.01
	No	556	53.1%	0.48–0.57		1		
BI	$0 \leq BI < 500$	520	52.5%	0.48–0.57	0.01	1		
	BI ≧ 500	88	39.1%	0.29–0.49		1.16	086–1.58	0.33
Variables	Factors	DFS ^b						
		Univariate	analysis			Multivaria	ble analysis	
		n	5yDFS	95% CI	Р	HR	95% CI	Р
Age	<50	263	50.2%	0.44–0.55	<0.01	1		
	≧50	345	39.7%	0.33–0.45		1.3	1.03–1.64	0.03
Sex	М	347	45.6%	0.40–0.51	0.69			
	F	261	45.6%	0.39–0.51				
Disease risk	Low	432	54.9%	0.49–0.60	<0.01	1		
	High	176	30.5%	0.24–0.36		1.9	1.52–2.37	<0.01
Conditioning	MAC	399	46.0%	0.40-0.51	0.73			
	RIC	209	44.5%	0.37-0.51				
HLA	Match	270	43.4%	0.37–0.49	0.4			
_	Mismatch	168	48.3%	0.41-0.55				
Donor	RBM	128	52.2%	0.43-0.60	0.14	1		
	RPB	86	44.7%	0.38-0.50		1.16	0.79-1.69	0.45
	UBM	261	38.9%	0.27-0.50		1.24	0.92-1.67	0.16
	OCB	133	42.6%	0.33-0.51	0.04	1.17	0.83-1.65	0.36
HCI-CI	0-3	548	46.7%	0.43-0.52	<0.01	1		
	4-5	43	28.6%	0.16-0.43		1.63	1.11-2.41	0.01
	6-	17	23.5%	0.07-0.45	0.01	1.44	0.82-2.54	0.2
Lung infection	res	52	14.3%	0.06-0.26	<0.01	2.32	1.67-3.22	<0.01
DI	NO	220	48.0%	0.43-0.53	0.00	1		
DI		520	47 10/		/ / / / /	1		
51	$0 \leq BI < 500$	520	47.1%	0.43-0.51	0.03	1	0.02 1.52	0.45
Variables	0 ≦ BI < 500 BI ≧ 500	520 88	47.1% 37.2%	0.43–0.51 0.27–0.47	0.03	1 1.12	0.83–1.52	0.45
Variables	$0 \leq BI < 500$ BI ≥ 500 Factors	520 88 NRM ^c	47.1% 37.2%	0.43–0.51 0.27–0.47	0.03	1 1.12	0.83-1.52	0.45
Variables	0 ≦ Bl < 500 Bl ≧ 500 Factors	520 88 NRM ^c Univariate	47.1% 37.2% analysis	0.43-0.51 0.27-0.47	0.03 P	1 1.12 Multivaria	0.83–1.52 ble analysis	0.45 P
Variables	0 ≦ BI < 500 BI ≧ 500 Factors	520 88 NRM ^c Univariate <i>n</i> 263	47.1% 37.2% analysis 5yNRM	0.43-0.51 0.27-0.47 95% Cl	0.03 P	1 1.12 Multivaria HR	0.83–1.52 ble analysis 95% Cl	0.45 P

Table 4. continued

Variables	Factors	OSª						
		Univariate	analysis			Multivaria	ole analysis	
		n	5yOS	95% CI	Р	HR	95% CI	Р
	≧50	345	30.2%	0.23-0.36		1.83	1.23–2.71	<0.01
HLA	Match	270	23.1%	0.18-0.28	0.02	1		
	Mismatch	168	29.1%	0.20-0.37		1.49	1.00-2.22	0.05
Donor	RBM	128	13.4%	0.07–0.20	<0.01	1		
	RPB	86	33.1%	0.20-0.44		2.6	1.44-4.69	<0.01
	UBM	261	27.7%	0.21-0.33		2.11	1.26–3.54	<0.01
	UCB	133	31.5%	0.21-0.40		2.01	1.15-3.26	<0.01
HCT-CI	0–3	548	24.3%	0.20-0.28	0.15	1		
	4–5	43	35.4%	0.16–0.50		1.63	0.86-3.09	0.14
	6-	17	47.6%	0.05–0.71		1.21	0.25-5.71	0.82
Lung infection	Yes	52	25.1%	0.15-0.33	<0.01	2.63	1.53–4.52	<0.01
	No	556	6.3%	0.04–0.09		1		
BI	0 <u>≤</u> BI < 500	520	24.2%	0.20-0.28	0.11	1		
	BI≧500	88	33.9%	0.21-0.44		1.04	0.58–1.85	0.9
Variables	Factors	aGVHD ^d						
		Univariate	analysis			Multivaria	ole analysis	
		n	aGVHD	95% CI	Р	HR	95% CI	Р
Age	<50	263	40.6%	0.35–0.46	0.45			
	≧50	345	38.1%	0.32-0.44				
Sex	Μ	347	40.2%	0.35-0.45	0.51			
	F	261	38.6%	0.32-0.44				
Disease risk	Low	432	37.9%	0.33-0.43	0.3			
	High	176	42.9%	0.36-0.49				
Conditioning	MAC	399	37.1%	0.30-0.44	0.22			
	RIC	209	40.9%	0.36–0.46				
HLA	Match	270	38.5%	0.33–0.44	0.04	1		
	Mismatch	168	47.1%	0.38–0.55		1.32	0.95–1.84	0.1
Donor	RBM	128	33.9%	0.25-0.42	0.08	1		
	RPB	86	43.3%	0.31–0.53		1.44	0.92–2.26	0.11
	UBM	261	44.2%	0.38–0.50		1.47	1.01–2.12	0.04
	UCB	133	33.2%	0.24-0.41		0.53	0.06-4.64	0.57
BI	0 <u>≦</u> BI < 500	520	40.1%	0.36–0.44	0.47	1		
	BI≧500	88	35.0%	0.24–0.45		0.99	0.64–1.52	0.95
Variables	Factors	cGVHD ^e						
		Univariate	analysis			Multivaria	ole analysis	
		n	5ycGVHD	95% CI	Р	HR	95% CI	Р
Age	<50	263	51.0%	0.45-0.57	0.11	1		
	≧50	345	46.5%	0.38-0.53		0.78	0.58–1.04	0.09
Sex	Μ	347	49.4%	0.42-0.55	0.96			
	F	261	49.9%	0.42-0.56				
Disease risk	Low	432	46.3%	0.40-0.51	0.02	1		
	High	176	58.0%	0.48-0.66		1.3	0.98–1.72	0.09
Conditioning	MAC	399	50.8%	0.44–0.56	0.67			
	RIC	209	46.8%	0.37-0.54				
HLA	Match	270	51.3%	0.44-0.61	0.26	1		
	Mismatch	168	57.4%	0.48-0.63		1.59	1.28–1.98	<0.01
Donor	RBM	128	55.2%	0.44-0.63	<0.01	1		
	RPB	86	52.2%	0.44–0.59		1.04	0.71-1.52	0.85
	UBM	261	63.0%	0.47-0.74		0.82	0.58-1.15	0.25

Table 4. continued

Variables	Factors	OSª							
		Univariate analysis			Multivariable analysis				
		n	5yOS	95% CI	Р	HR	95% CI	Р	
	UCB	133	25.4%	0.11–0.34		0.12	0.05–0.26	<0.01	
BI	$0 \leq BI < 500$	520	48.5%	0.43-0.53	<0.01	1			
	BI ≧ 500	88	56.9%	0.41–0.68		1.73	1.15–2.61	<0.01	

Univariate and multivariable analysis results for overall survival, disease-free survival and cumulative incidence of nonrelapse mortality, aGVHD and cGVHD risk factors in patients after allogeneic bone marrow transplantation.

BI Brinkman index, M male, F female, PS performance status, HCT-CI hematopoietic cell transplant-comorbidity index, RBM related bone marrow, RPBSC related peripheral blood, UBM unrelated bone marrow, UCB umbilical cord blood, MAC myeloablative conditioning, RIC reduced-intensity conditioning, HLA human leukocyte antigen.

^aFor overall survival, hazard ratio is adjusted with recipient age, disease risk, donor source, HCT-Cl, and lung infection.

^bFor disease-free survival, hazard ratio is adjusted with recipient age, disease risk, donor source, HCT-CI, and lung infection.

^cFor nonrelapse mortality, hazard ratio is adjusted with recipient age, HLA, donor source, HCT-CI, and lung infection.

^dFor acute GVHD, hazard ratio is adjusted with HLA and donor source.

^eFor chronic GVHD, hazard ratio is adjusted with recipient age, disease risk, HLA and donor source.

Table 5.	Table 5. Characteristics of chronic GVHD.							
		0 ≦ BI < 500 <i>N</i> (%)	BI ≧ 500 <i>N</i> (%)	p value				
None		328 (63)	54 (61)	0.7				
Limited		64 (12)	12 (14)	0.69				
Extensiv	/e	128 (25)	22 (25)	0.98				
Organs	involved							
Liver		73 (14)	13 (15)	0.19				
Skin		120 (23)	24 (27)	0.04				
Mout	h	93 (18)	18 (20)	0.08				
Eye		64 (12)	11 (13)	0.31				
Lung		43 (8)	11 (13)	0.19				
Gastr	ointestinal tract	36 (7)	4 (5)	0.12				
Joint		7 (1)	1 (1)	0.24				
Therapy	/							
Stero	id	57 (11)	5 (6)	0.13				
Cyclo	sporine	6 (1)	1 (1)	0.99				
Stero	id + Cyclosporine	12 (2)	2 (2)	0.98				
Tacro	limus	6 (1)	1 (1)	0.88				
Stero	id + Tacrolimus	30 (6)	5 (6)	0.97				
Topic	al only	20 (4)	5 (6)	0.18				
Stero transpla	id + Lung Int	1 (1)	0					

Limited and extensive GVHDs are defined according to the Seattle criteria. Where no value is shown, the number of events was too low to calculate a p value.

which might have influenced the transplantation outcomes. Patients' willingness to receive HSCT or expectations for HSCT might have led to the under-reporting of smoking history. This bias was more likely to affect the HRs toward the null. In addition, the current study had no strict exclusion criteria based on the PFT results, smoking status, or pulmonary disease for transplantation eligibility at our center. Therefore, patients with severe pulmonary dysfunction or other comorbidities might not have undergone transplantation; thus, a selection bias could have occurred.

In summary, there was a significant association between cigarette smoking and cGVHD after HSCT. Posttransplantation management is important because patients with high BI may be at higher risk for developing cGVHD than those with low BI. The current study highlights the need for further investigations to reveal how smoking leads to higher incidence of cGVHD. Hence, future prospective studies that investigate long-term outcomes of HSCT according to smoking status and continuous monitoring of smoking before and after HSCT must be conducted to explore this notion.

DATA AVAILABILITY

The data supporting the results of this study are available from the corresponding author upon a reasonable request.

REFERENCES

- Lucena CM, Torres A, Rovira M, Marcos MA, de la Bellacasa JP, Sánchez M, et al. Pulmonary complications in hematopoietic SCT: a prospective study. Bone Marrow Transplant. 2014;49:1293–9.
- Afessa B, Peters SG. Major complications following hematopoietic stem cell transplantation. Semin Respir Crit Care Med. 2006;27:297–309.
- Marks DI, Ballen K, Logan BR, Wang Z, Sobocinski KA, Bacigalupo A, et al. The effect of smoking on allogeneic transplant outcomes. Biol Blood Marrow Transplant. 2009;15:1277–87.
- Ehlers SL, Gastineau DA, Patten CA, Decker PA, Rausch SM, Cerhan JR, et al. The impact of smoking on outcomes among patients undergoing hematopoietic SCT for the treatment of acute leukemia. Bone Marrow Transplant. 2011;46:285–90.
- Chang G, Orav EJ, McNamara T, Tong MY, Antin JH. Depression, cigarette smoking, and hematopoietic stem cell transplantation outcome. Cancer. 2004;101:782–9.
- Tran BT, Halperin A, Chien JW. Cigarette smoking and outcomes after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2011;17:1004–11.
- Nuorti JP, Butler JC, Farley MM, Harrison LH, McGeer A, Kolczak MS, Breiman RF. Active Bacterial Core Surveillance Team. Cigarette smoking and invasive pneumococcal disease. N Engl J Med. 2000;342:681–9.
- Chelghoum Y, Danaïla C, Belhabri A, Charrin C, Le QH, Michallet M, et al. Influence of cigarette smoking on the presentation and course of acute myeloid leukemia. Ann Oncol. 2002;13:1621–7.
- Browman GP, Wong G, Hodson I, Sathya J, Russell R, McAlpine L, et al. Influence of cigarette smoking on the efficacy of radiation therapy in head and neck cancer. N Engl J Med. 1993;328:159–63.
- Ford MB, Sigurdson AJ, Petrulis ES, Ng CS, Kemp B, Cooksley C, et al. Effects of smoking and radiotherapy on lung carcinoma in breast carcinoma survivors. Cancer. 2003;98:1457–64.
- 11. Gritz ER, Dresler C, Sarna L. Smoking, the missing drug interaction in clinical trials: ignoring the obvious. Cancer Epidemiol Biomark Prev. 2005;14:2287–93.
- Pickles T, Liu M, Berthelet E, Kim-Sing C, Kwan W, Tyldesley S. PROSTATE COHORT OUTCOMES INITIATIVE. The effect of smoking on outcome following external radiation for localized prostate cancer. J Urol. 2004;171:1543–6.
- Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M, Sandmaier B. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2009;15:367–9.

- 1132
- Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. Consens conference on acute GVHD grading. Bone Marrow Transplant. 1994;1995:825–8.
- Shulman HM, Sullivan KM, Weiden PL, McDonald GB, Striker GE, Sale GE, et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med. 1980;69:204–17.
- Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant. 2013;48:452–8.
- Rigotti NA. Clinical practice. Treatment of tobacco use and dependence. N Engl J Med. 2002;346:506–12.
- Ho VT, Weller E, Lee SJ, Alyea EP, Antin JH, Soiffer RJ. Prognostic factors for early severe pulmonary complications after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2001;7:223–9.
- Savani BN, Montero A, Wu C, Nlonda N, Read E, Dunbar C, et al. Prediction and prevention of transplant-related mortality from pulmonary causes after total body irradiation and allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11:223–30.
- Allen JL, Fore MS, Wooten J, Roehrs PA, Bhuiya NS, Hoffert T, et al. B cells from patients with chronic GVHD are activated and primed for survival via BAFFmediated pathways. Blood. 2012;120:2529–36.
- Morissette MC, Gao Y, Shen P, Thayaparan D, Bérubé JC, Paré PD, et al. Role of BAFF in pulmonary autoantibody responses induced by chronic cigarette smoke exposure in mice. Physiol Rep. 2016;4:e13057.
- Polverino F, Baraldo S, Bazzan E, Agostini S, Turato G, Lunardi F, et al. A novel insight into adaptive immunity in chronic obstructive pulmonary disease: B cell activating factor belonging to the tumor necrosis factor family. Am J Respir Crit Care Med. 2010;182:1011–9.
- 23. Savani BN, Montero A, Srinivasan R, Singh A, Shenoy A, Mielke S, et al. Chronic GVHD and pretransplantation abnormalities in pulmonary function are the main determinants predicting worsening pulmonary function in long-term survivors after stem cell transplantation. Biol Blood Marrow Transplant. 2006;12:1261–9.

ACKNOWLEDGEMENTS

We would like to thank the medical staff at the Yokohama City University Medical Center, Yokohama City University School of Medicine, and Kanagawa Cancer Center for their excellent patient care.

AUTHOR CONTRIBUTIONS

We gratefully acknowledge the contributions of all co-authors for data collection and analysis support. All authors critically revised the report, commented on drafts of the manuscript, and approved the final report.

COMPETING INTERESTS

TT received personal fees from Otsuka, Novartis, Pfizer, BMS, Daiichi Sankyo, and Astellas, outside the submitted study. SF received research funding from Takeda Pharmaceutical and Otsuka Pharmaceutical. HN received research funding from Daiichi-Sankyo, Chugai Pharmaceuticals, Astellas, Asahikasei pharma, Takeda pharmaceuticals, Pfizer and Eizai, honoraria from Novartis and Daiichi Sankyo.

ETHICAL APPROVAL

This study was performed in accordance with the Declaration of Helsinki and the Ethics Guidelines for Clinical Research published by the Ministry of Health, Labor, and Welfare of Japan. This retrospective study was approved by Ethical Committee for Medical and Biological Research Involving Human Subjects of Yokohama City University Medical Center (B18080006). Approval for the protocol and written informed consent forms were obtained from the ethics committees at each institution. The written decision can be presented upon request.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41409-022-01678-7.

Correspondence and requests for materials should be addressed to Shin Fujisawa.

Reprints and permission information is available at http://www.nature.com/ reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

論文目録

I 主 論 文

Clinical impact of cigarette smoking on the outcomes of allogeneic hematopoietic stem cell transplantation: A multicenter retrospective study

Takuma Ohashi T., Aoki J., Ando T., Ishiyama Y., Ishii Y., Miyashita K., Nakajima Y, Tachibana Y., Hagihara M., Matsumoto K., Tanaka M., Kanamori H., Fujisawa S., and Hideaki Nakajima H.

雜誌名:Bone marrow transplantation Vol.57, Page1124-1132, 2022

Ⅱ 副 論 文 なし

Ⅲ 参考論文 なし