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INTRODUCTION

The human brain is an extraordinarily intricate neural network system, comprised of approximately 86 billion 

neurons and 85 billion non-neuronal cells. The diversity of these cells gives rise to various physiological 

rhythms that influence brain function [1] and gives rise to a wide array of cognitive abilities. This complexity 

also endows the brain with the capacity to adapt to new situations, reconfigure its organization, and maintain 

plasticity. Capitalizing on these properties, researchers have begun to apply the principles of neural networks to 

construct artificial intelligence systems. Contemporary neuroscience has witnessed significant progress in 

developing mathematical models that elucidate the biological mechanisms of dynamic systems that emulate 

brain function. 

This development has been paralleled by the accumulation of substantial brain-related data, leading to a 

commensurate focus on mathematical computer simulations and their comparison with experimental results [2].

From a  broader  perspective,  the  brain  functions  within  a  noisy  and heterogeneous  environment  [3],  yet  it

remains unclear how the heterogeneity at neural and structural levels plays a vital role in brain functionality. In

modern neuroscience, the proliferation of mathematical models has facilitated the recreation of dynamic systems

mirroring the biological operations of the brain [4]. Within this context, stochastic resonance,  an intriguing

phenomenon in which embedded noise enhances a system's sensitivity and performance at a finite level, is

believed to play a pivotal role in various natural and artificial neural systems [5]. Several studies demonstrate

how stochastic resonance can significantly enhance signal detection [6-7].

This study seeks to contribute to the field by investigating the propagation of spike activity in a model network

and developing a simple mathematical model that explains how heterogeneity can enhance signal propagation

within neurons [8]. Notable examples include studies on transcranial random noise stimulation (tRNS), where

subjects are stimulated with weak random electrical stimuli, resulting in improvements in motor, sensory, and

cognitive tasks [9]. Given the inherent heterogeneity of the brain, we explore two types of heterogeneity in our

study: axonal heterogeneity, related to variations in axonal distances between neurons, and neural heterogeneity,

linked to differences in neuron dynamics. In real brains, neurons are not arranged in a regular grid but are

influenced  by  randomness.  In  our  model  network,  we  manipulate  axonal  distances  to  create  axonal

heterogeneity, demonstrating that it enhances information propagation, termed the Stochastic Grid Enhancement

(SGE effect).  Neural heterogeneity, reflecting diverse characteristics among neurons within the same population

or region, is critical in neuroscience as it sheds light on how different neurons contribute to brain function and

information processing. Our study reveals that neural heterogeneity results in the most robust spiking activity,

referred to as the Stochastic Neural Enhancement (SNE effect).

In  this  thesis,  we  demonstrate  how  the  interplay  between  neural  and  structural  heterogeneity  enhances

information propagation.



METHODS & RESULTS

Biologically speaking, neurons in the brain live in confined areas without specified

borders. We choose a border-less structure as a torus to portray the most plausible

representation of the brain’s neuron population’s network. The network is

constructed from a 2D grid by connecting its borders to form a 3D torus. Each

node/neuron communicates with its four adjacent neighbors as in figure 1.

The distance between nodes is calculated by the Manhattan distance (or taxicab

geometry). As in figure 2, there may be several different paths with the same

Manhattan distance between two points. Only a neuron, initiator nin  , is connected

to a constant external current of I = 10mA and spikes periodically. We analyze the

signal propagation within the network to a random output neuron no by calculating

the time it takes for the first spike to reach  no. We ran several simulations while

increasing the axonal heterogeneity. 

In figure 3 is a biological representation of a neuron nf  connected to four neurons.

The spike signals cross over the `axon` connection (cd: central delay ) and the axon

terminal (  δ ). 

We define the sum of these two distance as axonal transmission delay  = cd +   μ δ ,

which is the connection between two neurons.  The cd is the constant value of the axon while the variability of  δ

generates the axonal heterogeneity. 

For each connection μ is calculated as : μ f , f p

i , j =2cd j+2 i cd j

ns ×(2x f , f p

i , j −1)⏞ (1) ; 

where ns  is an initial parameter and i represents the increment of the axonal heterogeneity 0≤i≤ns . 

According to (1) : 

for  i  0 →  (small axonal heterogeneity) → cd-  <  < cd+  ε μ ε

for i  ns  → (large axonal heterogeneity) →  0 <  < 2cd. μ  

While    μ represent the transmission time for a spike to run

over the axonal connection (cd +  δ ),  we define the time it

takes for the neuron to achieve a spike following the PSP  as 

process time  τ  in ms.

Total propagation timed d

d=    μ + τ  ( axonal transmission time + process time).  

Figure 1.Each neuron has four connections and 
the border is connected to its counterpart.

 = cd +   μ δ

Figure 2.

δ

Axon: cd

Figure 3.
Biological representation of intrinsic axonal delay between 
two neurons nf  and nfp .



 

In figure 4 panels 1, for i  ns → (high axonal heterogeneity) if follows 0 <  < 2cd , μ and it may happen that the

process time τ >  μ . When this happens, we may have a configuration as in panel 3. The neuron nf  is sending a

PSPs A to the nf1, while this is still processing a PSPs B. Since   τ > ,  μ A will reach B inside nf1 to generate a

spike. We call this the SGE effect.  

In panel 2, for i  0 → (small axonal heterogeneity),  it results  <   τ μ and no SGE effect takes action.

Therefore, the increment of axonal heterogeneity trigger the SGE effect  which enhances spiking activity.

The neural heterogeneity is achieved by manipulating Izhikevich’s model four parameters a, b, c, and d. 

In figure 5, the combinations of the four parameters produced many types of neuron spiking behavior.

{v
′
=0.04 v 2+5v+140− u+I

u′
=a (b v −u )

i f v ≥30mV → { v← c
u ←u+d

(2)

 v  : Membrane potential of neuron
u   : Recovery variable (dynamics of sub-threshold).
a  :  Controls the rate of recovery.
b  :  Sensitivity of the recovery variable.
c   : (−65mV ) represents the after-spike reset v.
d  : (6mV ) describes the after-spike reset of u.

Figure 5.  Neural heterogeneity. To the different values of a, b, c, d  correspond a variability of a large range of neuron models.

Figure 4. Representation of the SGE effect.



In figure 6 a sketch of the effect of axonal heterogeneity

over a single spike propagation. Each pixel's coordinate

represents a neuron, and its color the time (or delay) of

the first spike. The blue region is without spiking

activity. The initiator nin    is stimulated with I=10 mA. 

In panel B, to a larger axonal heterogeneity, corresponds

a larger number of spiking neurons.

We now define the spike propagation delay fΔ  o 
i,j

  between nin and no as:  fΔ  o 
i,j  = f o 

i,j  - f in 
i,j

  

 f o 
i,j and  f in 

i,j
 are the time of the first spike of no and nin .          

i – loop : increase the axonal heterogeneity of  (μ constant cd j ).

j – loop : increase the value of the central delay cd j .

In figure 7, the y-axis represents the fΔ  o 
i,j

  values, the x-axis

the axonal heterogeneity  as i varies from 0 to 10 ms in ns

steps for a cd j = 10 ms. As expected, by increasing the axonal

heterogeneity, fΔ  o 
i,j

 decreases due to the  SGE  effect. The

value of the slop  m= -2.38 confirms the decreasing of  fΔ  o 
i,j .

According to the multinomial coefficient formula, by increasing the dimension of the network, the SGE effect 

get stronger. The pre-synaptic activity increases because the number of paths P with the same mMd  from nin to 

no increases. P is given by the multinomial coefficient  →   .

In figure 8, a comparison of the SGE effect  on

three different dimensional ANNs. As cd j

varies from 1 to 71 ms, we calculate the value

of m  as the axonal heterogeneity increases in

40 steps as in figure 7. For each cd j we plot

three m for the 3D (blue), 4D (red), and 5D

(green) network. 

All m are negative, indicating the SGE effect, 

we notice that increasing the network

dimension, as expected, the SGE effect 

strengthen up.

We achieve neuron heterogeneity by assign each excitatory cell ni describe in (2) with the values:

 ai   = 0.02  , bi = 0.2 ,  ci= -65 + (15) x4 2  ;  di  =   8 + (-6) x5
2 , x4 , x5 : v. uniformly distributed in [0,1].  

To  x4 = x5 =0   → regular spiking (RS) cell, and x4 = x5 = 1 → chattering (CH) cell. We use x4 and x5 x to bias the

distribution toward RS cells (predominance cells). 

Axonal heterogeneity : (0 ; 9) ms   

Δ
f  o

 i,j
 

Figure 7. Spike  propagation delay 

P=
(X+Y +Z )!

X !Y !Z !

Figure 8. Comparison of regression’s slope m for three-dimensional networks.

Figure 6. Single spike propagation.



In figure 9 we present the spiking activity for the same three

different network of figure 8, under the combination of the axonal

and neural heterogeneity.

The cd =22 ms as the axonal heterogeneity changes in 14 steps

from o to 20 ms (x-axis). The y-axis reports the number of total

spike for the network. 

The neural heterogeneity is represented by the six colored graphs.

The blue graph indicates H=1 (100%)  full neural heterogeneity,

corresponding to a population of many different types of neurons.

H= 0 (R.S.)  zero heterogeneity indicates a network of all Regular

Spiking neurons (R.S.). It can be observed as at any level of axonal

heterogeneity the number of spikes for H=1  >>  H=0. 

Neural heterogeneity results in a larger spiking activity. We call this

effect stochastic neuron enhancement : SNE.

Finally in the figure 10 and 11 we compare the result of the SGE and SNE effect as cd  ranges from 1 to 71 ms.  

In figure 10 we show how the SGE effect acts in the same way for two models at 0 and full neural heterogeneity 

(H=0 red, and H=1 blue) . In the figure 11, however, for H=1 the network performs at the highest number of 

spiking activity.

 

We can conclude that, by keeping constant the current, synaptic strength, and the number of neurons, the right 

balance of axonal and neural heterogeneity offers the most suitable model regarding robustness (highest spiking 

activity, SNE) and spike propagation performance (SGE effect).

Figure 9. Spiking activity for three-dimensional networks.

Figure 10. SGE effect of two models of neural heterogeneity  H=1 and  H=0.0 Figure 11.   SNE effect. Spiking activity of H=1>> H=0 (R.S.).
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