
 

 

 

DOCTORAL THESIS 

 

 

 

 

 

Multiomic molecular characterization of the response to 
combination immunotherapy in MSS/pMMR metastatic 

colorectal cancer 
 

マイクロサテライト安定/ミスマッチ修復機能保持大腸癌における併用
免疫療法への治療効果に関する分子学的特性のマルチオミック解析 

 

 

 

 

September 2024 
(2024 年 9 月) 

 

Shogo Takei 
武井 将伍 

 
Department of Gastroenterological Surgery 

Yokohama City University Graduate School of Medicine 
横浜市立大学 大学院医学研究科 医科学専攻 

消化器・腫瘍外科学 Next Generation Oncologist 養成コース 
 
 

(Doctoral Supervisor: Itaru Endo, Professor) 
（指導教員：遠藤 格 教授） 

  



1Takei S, et al. J Immunother Cancer 2024;12:e008210. doi:10.1136/jitc-2023-008210

Open access�

Multiomic molecular characterization of 
the response to combination 
immunotherapy in MSS/pMMR 
metastatic colorectal cancer

Shogo Takei  ‍ ‍ ,1,2 Yosuke Tanaka,3 Yi-Tzu Lin,4 Shohei Koyama  ‍ ‍ ,4 
Shota Fukuoka,5 Hiroki Hara,6 Yoshiaki Nakamura,1 Yasutoshi Kuboki,1 
Daisuke Kotani,1 Takashi Kojima,1 Hideaki Bando,1 Saori Mishima,1 
Toshihide Ueno,3 Shinya Kojima,3 Masashi Wakabayashi,7 Naoya Sakamoto,8 
Motohiro Kojima,8 Takeshi Kuwata,8,9 Takayuki Yoshino,1 
Hiroyoshi Nishikawa  ‍ ‍ ,4,10 Hiroyuki Mano,3 Itaru Endo,2 Kohei Shitara  ‍ ‍ ,1,10 
Akihito Kawazoe1

To cite: Takei S, Tanaka Y, Lin Y-
T, et al.  Multiomic molecular 
characterization of the response 
to combination immunotherapy 
in MSS/pMMR metastatic 
colorectal cancer. Journal for 
ImmunoTherapy of Cancer 
2024;12:e008210. doi:10.1136/
jitc-2023-008210

	► Additional supplemental 
material is published online only. 
To view, please visit the journal 
online (https://​doi.​org/​10.​1136/​
jitc-​2023-​008210).

ST, YT and Y-TL contributed 
equally.

Accepted 16 January 2024

For numbered affiliations see 
end of article.

Correspondence to
Dr Akihito Kawazoe;  
​akawazoe@​east.​ncc.​go.​jp

Dr Kohei Shitara;  
​kshitara@​east.​ncc.​go.​jp

Original research

© Author(s) (or their 
employer(s)) 2024. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Background  Immune checkpoint inhibitor (ICI) 
combinations represent an emerging treatment strategies 
in cancer. However, their efficacy in microsatellite stable 
(MSS) or mismatch repair-proficient (pMMR) colorectal 
cancer (CRC) is variable. Here, a multiomic characterization 
was performed to identify predictive biomarkers 
associated with patient response to ICI combinations 
in MSS/pMMR CRC for the further development of ICI 
combinations.
Methods  Whole-exome sequencing, RNA sequencing, 
and multiplex fluorescence immunohistochemistry of 
tumors from patients with MSS/pMMR CRC, who received 
regorafenib plus nivolumab (REGONIVO) or TAS-116 plus 
nivolumab (TASNIVO) in clinical trials were conducted. 
Twenty-two and 23 patients without prior ICI from the 
REGONIVO and TASNIVO trials were included in this study. 
A biomarker analysis was performed using samples from 
each of these studies.
Results  The epithelial-mesenchymal transition pathway 
and genes related to cancer-associated fibroblasts were 
upregulated in the REGONIVO responder group, and the 
G2M checkpoint pathway was upregulated in the TASNIVO 
responder group. The MYC pathway was upregulated in 
the REGONIVO non-responder group. Consensus molecular 
subtype 4 was significantly associated with response 
(p=0.035) and longer progression-free survival (p=0.006) 
in the REGONIVO trial. CD8+ T cells, regulatory T cells, 
and M2 macrophages density was significantly higher in 
the REGONIVO trial responders than in non-responders. 
Mutations in the POLE gene and patient response were 
significantly associated in the TASNIVO trial; however, the 
frequencies of other mutations or tumor mutational burden 
were not significantly different between responders and 
non-responders in either trial.
Conclusions  We identified molecular features associated 
with the response to the REGONIVO and TASNIVO, 
particularly those related to tumor microenvironmental 
factors. These findings are likely to contribute to 
the development of biomarkers to predict treatment 

efficacy for MSS/pMMR CRC and future immunotherapy 
combinations for treatment.

INTRODUCTION
Colorectal cancer (CRC) is the second 
leading cause of cancer-related deaths world-
wide.1 Increasing numbers of immune check-
point inhibitors (ICIs) have become available 
as a treatment option for various malignant 
tumors.2–7 However, for metastatic CRC, the 
efficacy of ICIs is limited to patients with 
microsatellite instability-high or mismatch 
repair-deficient tumors, and the majority 
of microsatellite stable (MSS) or mismatch 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Immune checkpoint inhibitor combinations are 
emerging treatment strategy in cancer. However, 
biomarkers of response in microsatellite stable 
mismatch repair-proficient (MSS/pMMR) colorectal 
cancer have not been identified.

WHAT THIS STUDY ADDS
	⇒ We identified molecular features associated with the 
response to regorafenib plus nivolumab or TAS-116 
plus nivolumab combinations. Specifically, activa-
tion of genes in the epithelial-mesenchymal tran-
sition pathway and consensus molecular subtype 
4 enrichment were predictive biomarkers in the 
REGONIVO trial.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our analyses could lead to the further development 
of biomarkers for MSS/pMMR colorectal cancer and 
additional combinations of immunotherapies for 
treatment.
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http://orcid.org/0000-0003-0614-8383
http://orcid.org/0000-0002-6897-9417
http://orcid.org/0000-0001-6563-9807
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repair-proficient (pMMR) CRC tumors do not respond to 
treatment with individual ICIs.8–11

The limited effect of ICIs on MSS and pMMR CRC may 
be attributed to a low neoantigen load and few tumor-
infiltrating lymphocytes, which prevents a robust immune 
response. Numerous immunosuppressive cells, such as 
regulatory T (Treg) cells and tumor-associated macro-
phages, may also infiltrate the tumor microenvironment 
to prevent antitumor activity.12–14 To overcome these resis-
tance mechanisms, several immunotherapy combinations 
have been evaluated for MSS or pMMR CRC15 16; however, 
most have been largely ineffective. Combinations of the 
MEK inhibitor cobimetinib and the programmed death-
ligand 1 (PD-L1) inhibitor atezolizumab as well as the 
multikinase inhibitor lenvatinib and the programmed 
cell death protein 1 (PD-1) inhibitor pembrolizumab as 
salvage therapy have failed to exhibit a survival benefit 
compared with the standard of care in phase III trials.15 16 
Further development of ICI combinations for MSS or 
pMMR CRC is necessary.

Previously, we conducted two investigator-initiated 
trials of ICI combinations of the PD-1 inhibitor 
nivolumab with drugs expected to activate the immune 
response, namely, the multikinase inhibitor regorafenib 
plus nivolumab (REGONIVO) and the HSP90 inhibitor 

TAS-116 (pimitespib) plus nivolumab (TASNIVO) for 
MSS or pMMR CRC, which demonstrated efficacy in 
a limited number of these patients.17 18 These findings 
highlighted the need to identify biomarkers to identify 
patients who would benefit from such combinations and 
to understand the mechanisms through which this effi-
cacy was achieved for the further development of ICI 
combinations. To identify predictors of response to ICI 
combinations in patients with MSS or pMMR CRC, we 
characterized tumors from patients who received REGO-
NIVO or TASNIVO in clinical trials using whole-exome 
sequencing (WES), RNA sequencing, and multiplex fluo-
rescence immunohistochemistry (mIHC). By applying 
this multiomics approach, we characterized these tumors 
at the molecular level and identified molecular features 
that may contribute to the development of predictive 
biomarkers and future immunotherapy combinations.

METHODS
Patients
The eligibility criteria for this study were as follows: 
(1) enrollment in a phase Ib trial of REGONIVO 
(EPOC1603)17 or a phase Ib trial of TASNIVO 
(EPOC1704)18; (2) patients with MSS or pMMR CRC; and 

Figure 1  Flow diagram of the study The figure illustrates the process research sample selection and the number of analyses 
successfully completed with each method. Only patients with microsatellite stable or mismatch repair-proficient colorectal 
cancer were included in this study. Patients without WES data due to inadequate sample volume or unsuccessful WES 
were also included in the analysis if targeted gene panel analysis data were available. CRC, colorectal cancer; ICI, immune 
checkpoint inhibitors; IHC, immunohistochemistry; mIHC, multiplex fluorescence immunohistochemistry; MSI, microsatellite 
instability; NSCLC, non-small cell lung cancer; WES, whole-exome sequencing.
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(3) no ICI therapy prior to trial enrollment. The detailed 
methods of these trials have been previously reported.17 18 
The study was conducted in accordance with the Declara-
tion of Helsinki. The results are publicly available on the 
official website of National Cancer Center Hospital East, 
and the research subjects were provided with an opportu-
nity to decline participation.

Samples
Tissues were obtained from patients prior to the admin-
istration of the investigational treatment and were 
formalin-fixed and paraffin-embedded (FFPE). The 
FFPE samples were subjected to WES, RNA sequencing, 
and mIHC staining. Most of the samples were primary 
tumors that were surgically resected before patient enroll-
ment, and all tumor samples were collected prior to any 
ICI combination therapy, with none collected after any 
immunotherapy; additional details are provided in online 
supplemental table S1. Peripheral blood mononuclear 
cells or normal colon tissue were also used as germ line 
controls.

WES
Genomic DNA tissue was extracted from FFPE tissues 
with the GeneRead DNA FFPE Kit (QIAGEN). DNA was 
enriched using the Twist Library Preparation Kit (Twist 
Bioscience). The DNA in the resulting libraries was 
subjected to next-generation sequencing, and 150 bp was 
sequenced from both ends on a NovaSeq 6000 (Illumina) 
to produce paired-end reads. Paired-end sequencing 
reads with masked nucleotides with quality scores less 
than 20 were aligned to the hg38 reference genome 
using BWA-MEM (http://bio-bwa.sourceforge.net/) and 
Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/​
index.shtml). Somatic synonymous and non-synonymous 
mutations were called using our in-house caller and two 
publicly available mutation callers: Mutect2, as part of the 
Genome Analysis Toolkit (https://gatk.broadinstitute.​
org/hc/en-us), and VarScan2 (http://varscan.source-
forge.net/). Mutations meeting any of the following 
criteria were discarded: tumor sample variant allele 
frequency <0.05; mutant read number in the germline 
control samples of >2; mutations detected in only one 
strand of the genome; or the variant present in the normal 
human genome in either the 1,000 Genomes Project 
data set (https://www.internationalgenome.org/) or our 
in-house database. Gene mutations were annotated using 
SnpEff (http://snpeff.sourceforge.net). Tumor muta-
tional burden (TMB) was defined as the total number of 
mutations per megabase in the WES bait region. Targeted 
gene panel analysis data (Oncomine Cancer Research 
Panel, Thermo Fisher) were used for complementarity 
when WES data were not available.

RNA sequencing
Total RNA was extracted from FFPE tumor samples using 
the RNeasy FFPE Kit (QIAGEN). Ribosomal RNA deple-
tion was performed using the NEBNext rRNA Depletion 
Kit (New England Biolabs). RNA integrity was assessed 
using TapeStation (Agilent Technologies). To exclude 
the degraded RNA, RNA of sufficient integrity was 
used for RNA sequencing (RNA-seq) with an NEBNext 
Ultra Directional RNA Library Prep Kit (New England 
Biolabs). Prepared RNA libraries were subjected to 
next-generation sequencing on a NovaSeq 6000 (Illu-
mina) to produce paired-end sequencing reads. For 
RNA-seq data expression profiling, paired-end reads 
were aligned to the hg38 human genome and quantified 
using TopHat2 (https://github.com/infphilo/​tophat) 
and Cufflinks (https://github.com/cole-trapnell-lab/
cufflinks).

Gene Set Enrichment Analysis (GSEA) was performed 
using GSEA V.4.3.2 (https://github.com/GSEA-​
MSigDB). Genes were ranked based on a log2-fold 
change in expression and gene enrichment scores were 
calculated based on the rank of the genes and gene sets. 
Gene sets from the Molecular Signatures Database V.7.2.

Consensus molecular subtypes (CMSs) were evaluated 
as described previously.19

Table 1  Patient characteristics

REGONIVO TASNIVO

No. of patients 22 23

Age

 � Median, years 
(range)

57.5 (41–77) 61 (32–77)

 � ≥65, n (%) 6 (27.3) 10 (43.5)

Sex, n (%)

 � Male 16 (72.7) 12 (52.2)

 � Female 6 (27.3) 11 (47.8)

ECOG PS, n (%)

 � 0 22 (100) 19 (82.6)

 � 1 0 (0) 4 (17.4)

Previous treatment regimens, n (%)

 � 1 0 (0) 1 (4.3)

 � ≥2 22 (100) 22 (95.7)

Primary tumor location, n (%)

 � Right side 3 (13.6) 14 (60.9)

 � Left side 19 (86.4) 9 (39.1)

Metastatic sites, n (%)

 � Liver 10 (45.5) 10 (43.5)

 � Lung 14 (63.6) 15 (65.2)

 � Lymph node 14 (63.6) 9 (39.1)

 � Peritoneum 3 (13.6) 11 (47.8)

Number of metastatic organs, n (%)

 � 1 4 (18.2) 7 (30.4)

 � ≥2 18 (81.8) 16 (69.6)

ECOG, Eastern Cooperative Oncology Group; PS, performance 
status; REGONIVO, regorafenib plus nivolumab; TASNIVO, TAS116 
plus nivolumab.

https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us
http://varscan.sourceforge.net/
http://varscan.sourceforge.net/
https://www.internationalgenome.org/
http://snpeff.sourceforge.net
https://github.com/infphilo/tophat
https://github.com/cole-trapnell-lab/cufflinks
https://github.com/cole-trapnell-lab/cufflinks
https://github.com/GSEA-MSigDB
https://github.com/GSEA-MSigDB
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Multiplex immunohistochemistry and PD-L1 staining
FFPE tumor tissue blocks were sliced into 4 mm-thick 
sections and placed on adhesion microscope slides 
(Matsunami). The tissue slides were deparaffinized and 
rehydrated prior to mIHC staining. Antigen retrieval 
and staining were performed using Opal 7-Color IHC 
Kits (AKOYA Biosciences) according to the manufac-
turer’s protocol. CD3 (Clone SP7; Abcam), CD8 (Clone 
C8/144B; Dako), CD206 (Clone CL0387; Invitrogen), 
CD11b (Clone D6×1N; Cell Signaling Technology), 
FOXP3 (Clone 236A/E7; Abcam), PDGFRα (Clone 
D1E1E; Cell Signaling Technology) and Cytokeratin 
(Clone AE1/AE3; Abcam) staining was examined and 
images were acquired using the Vectra 3 System (Perki-
nElmer). Images were exported using inForm Tissue 
Analysis Software (AKOYA Biosciences). Cell density and 
expression percentage of specific protein were calculated 
based on the average of at least three regions of interest 
(682 μm×510 µm/region) using HALO image analysis 
software (Indica Labs).

For PD-L1 staining using the anti-PD-L1 28–8 anti-
body, the combined positive score (CPS) was assessed 

by a pathologist (TKu) and defined as the percentage of 
total tumor cells (including tumor cells, lymphocytes, and 
macrophages) multiplied by 100 in the REGONIVO trial. 
In the TASNIVO trial, CPS was measured by the PD-L1 
IHC 22C3 pharmDx assay (Agilent Technologies).

Outcomes and statistics
Patients experiencing a clinical benefit (responders) 
were defined as those who achieved a complete response 
(CR), partial response (PR), or stable disease (SD) lasting 
more than 6 months as evaluated by Response Evaluation 
Criteria in Solid Tumors V.1.1 criteria. Progression-free 
survival (PFS) was defined as the time from registration 
for clinical trials to disease progression or death (for 
any reason). Overall survival (OS) was defined as the 
time from registration to death (for any reason). Quan-
titative data are presented as the median and range. The 
Mann-Whitney U and χ2 tests were used for comparisons 
between continuous and categorical variables, respec-
tively. PFS and OS were estimated using the Kaplan-Meier 
method, and HRs and CIs were estimated using a Cox 

Figure 2  Efficacy of REGONIVO and TASNIVO treatment in patients included in this study waterfall plot (A) showing the 
maximum percentage change in tumor size from baseline as measured by Response Evaluation Criteria in Solid Tumors 
(RECIST) in the REGONIVO trial. Spider plot (B) showing the longitudinal change in RECIST percentage from baseline in 
the REGONIVO trial. Waterfall plot (C) and spider plot (D) as above but showing data from the TASNIVO trial. CR, complete 
response; PD, progressive disease; PR, partial response; REGONIVO, regorafenib plus nivolumab; SD, stable disease; 
TASNIVO, TAS116 plus nivolumab.
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proportional hazards model. All statistical analyses were 
performed using SAS Release V.9.4 (SAS Institute).

RESULTS
Patients
Twenty-four and 25 patients from the REGONIVO and 
TASNIVO trials, respectively, with MSS or pMMR CRC 
without prior ICI treatment, met the eligibility criteria for 
this study (figure 1). We successfully performed RNA-seq 
and WES and obtained gene panel and mIHC data for 22 
and 23 patients in the REGONIVO and TASNIVO trials, 
respectively (figure  1). Patients with left-sided tumors 
were observed more frequently in the REGONIVO trial 
(86.4%), whereas those with right-sided tumors were 
observed more frequently in the TASNIVO trial (60.9%) 
(table  1). Ten patients in each of the REGONIVO 
(45.5%) TASNIVO trials (43.5%) had liver metastasis 
(table  1). Thirteen of 22 (59%) patients in the REGO-
NIVO trial and 7 of 23 (30%) patients in the TASNIVO 
trial were classified as responders (CR, PR, and SD≥6 
months) (figure  2). In this study, all samples used for 

WES, RNA-seq, and mIHC staining were obtained from 
patients prior to ICI therapy and were FFPE.

Molecular features associated with clinical outcomes
Mutational features
We analyzed the differences in the mutational profiles 
between responders and non-responders in each trial 
using WES (figure  3 and online supplemental table 
S2). The mutational landscape of each trial cohort was 
comparable with that of previous reports.20 We observed 
a significant association between POLE (DNA poly-
merase epsilon) mutations and positive response in the 
TASNIVO trial (p=0.015), in which two cases with POLE 
missense mutations achieved PR. One out of two patients 
harboring POLE mutations exhibited an extremely high 
TMB (78 mutations/Mb). The TMB of the other patient 
could not be analyzed because no samples were available. 
The frequencies of the other representative gene muta-
tions in CRC, including KRAS, ERBB2, BRAF, PIK3CA, 
TP53, ATM, APC, AXIN2, LRP5, TCF7L2, SMAD2/3/4, 
ARID1A, and FBXW7, were not significantly different 
between responders and non-responders in either trial 

Figure 3  Molecular characterization The top section of the figure shows the duration of PFS. The middle section indicates the 
response status (CR, PR, or SD≥6 months), CMS, TMB, and PD-L1 CPS. The bottom section shows the distribution of gene 
mutations determined by WES or targeted gene panel analysis. CR, complete response; CPS, combined positive score; CMS, 
consensus molecular subtypes; NA, not available; PFS, progression-free survival; PR, partial response; REGONIVO, regorafenib 
plus nivolumab; SD≥6, stable disease duration of at least 6 months; TASNIVO, TAS116 plus nivolumab; TMB, tumor mutational 
burden; WES, WES, whole exome sequencing.

https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
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(figure  3 and online supplemental table S2). TMB was 
not associated with the response to either of the ICI 
combinations even after excluding POLE cases (online 
supplemental figure S1).

Transcriptomic features
To find the difference in gene expression and upregu-
lated signal between responders and non-responders, 
we next performed transcriptome analysis and GSEA 
on the cohorts in both trials. These analyses revealed 
pathways associated with the response to each combina-
tion therapy. Specifically, upregulation of the epithelial-
mesenchymal transition (EMT) pathway was observed 
in the REGONIVO responder group (figure  4). The 
expression of representative EMT pathway genes, such as 
TGFB3, VIM and FN1, were upregulated in the responder 
group (online supplemental figure S2A). Notably, genes 
related to cancer-associated fibroblasts (CAFs) were 
also upregulated (online supplemental figure S2B). In 
addition, genes related to the inflammatory response 
were upregulated in the REGONIVO responder group, 

and we observed a significant upregulation of immune-
related genes such as STAT3 (online supplemental figure 
S2A). Importantly, we also observed upregulation of the 
PDGFRA gene, a known target of regorafenib, in the 
REGONIVO responder group (online supplemental 
figure S2A).

Upregulation of the MYC pathway was observed in the 
REGONIVO non-responder group (figure  4). Upreg-
ulation of genes associated with the G2M checkpoint 
pathway was observed in the TASNIVO responder group. 
Additionally, upregulation of PI3K_AKT_MTOR pathway 
genes was observed in the responder group, and AKT1 
and HRAS expression were significant upregulated 
(online supplemental figure S2C).

CMS classification of CRC
Given the results of our transcriptomic analysis, we next 
sought to elucidate the differences in CMS classification 
using RNA-seq data. CMS classification was possible in 
20 of 22 patients in the REGONIVO trial and 21 of 23 
patients in the TASNIVO trial. CMS1, CMS2, CMS3, and 

Figure 4  GSEA gene sets enriched in responders and non-responders in the REGONIVO and TASNIVO trial. ES, enrichment 
score; FDR, false discovery rate; GSEA, Gene Set Enrichment Analyses; NES, normalized enrichment score; REGONIVO, 
regorafenib plus nivolumab; TASNIVO, TAS116 plus nivolumab; TGF, transforming growth factor.

https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
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CMS4 were detected in 0, 7 (35%), 0, and 13 (65%) cases 
in the REGONIVO trial and 4 (19%), 3 (14%), 2 (10%), 
and 12 (57%) cases in the TASNIVO trial, respectively. 
In the REGONIVO trial, CMS4 was significantly asso-
ciated with patient response compared with the other 
CMS subtypes (p=0.035), but CMS4 was not associated 
with patient response in the TASNIVO trial (online 
supplemental table S2). Among 13 patients with CMS4 
in the REGONIVO trial, one had a CR, six had a PR, and 
three had SD lasting more than 6 months. Patients with 
CMS4 in the REGONIVO trial demonstrated a signifi-
cantly longer PFS (median 12.3 months vs 4.2 months; 
HR 0.208 (95% CI 0.062 to 0.693); p=0.006) and a longer 
OS (median 25.3 months vs 19.2 months; HR 0.621 (95% 
CI 0.196 to 1.968); p=0.4139) than did those with other 
CMS subtypes, whereas those with CMS4 in the TASNIVO 
trial did not (figure  5). In addition, when considering 
only cases of non-liver metastasis, a significant improve-
ment in PFS was observed in patients with CMS4 in the 
REGONIVO trial (median 15.0 months vs 4.1 months; 
HR 0.072 (95% CI 0.006 to 0.808); p=0.006), which was 

not observed in cases with liver metastasis (online supple-
mental figure S3).

Multiplex fluorescence immunohistochemistry
mIHC of FFPE specimens obtained prior to treatment 
was performed to compare the tumor immune cell infil-
tration of responders and non-responders in the REGO-
NIVO and TASNIVO cohorts using image analysis software 
(figure 6A). In the REGONIVO trial, the density of CD8+T 
cells (CD3+CD8+), Treg cells (FOXP3+CD3+CD8–), and 
M2 macrophages (CD206+CD11b+) in the intratumoral 
area was significantly higher in responders (n=13) than in 
non-responders (n=9) (figure 6B). In contrast, M2 macro-
phage density was significantly lower in the responders 
(n=6) than in the non-responders (n=15) (figure 6C) in 
the TASNIVO trial. Similar trends were observed when 
focusing on primary lesions (online supplemental figure 
S4). In the combined analysis of samples from both trials, 
higher infiltration of CD8+ T cells was observed in the 
CMS4 subtype than in the CMS2 and CMS3 subtypes, and 
infiltration of Treg cells and M2 macrophages was also 

Figure 5  Survival curves based on the CMS classification Kaplan-Meier plots the PFS (A) and OS (B) of patients in the 
regorafenib plus nivolumab trial with tumors classified as CMS4, or as other CMS subtypes. PFS (C) and OS (D) of patients 
in the TAS116 plus nivolumab trial with tumors classified as CMS4 or as other CMS subtypes. CMS, consensus molecular 
subtypes; OS, overall survival PFS, progression-free survival.

https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
https://dx.doi.org/10.1136/jitc-2023-008210
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observed; however the differences were not statistically 
significant (online supplemental figure S5). One patient 
harboring POLE mutations demonstrated a higher-than-
average infiltration of CD8+ T cells with lower infiltration 
of Treg cells and M2 macrophages. Furthermore, in line 
with transcriptome analysis, responders (n=7) presented 
higher PDGFRα expression than non-responders (n=8) 

in the REGONIVO trial (online supplemental figure S6A, 
B).

We also evaluated the association between PD-L1 CPS, 
which is commonly associated with ICI response, and the 
proportion of responders, however, there was no signifi-
cant difference (figure 3 and online supplemental table 
S2).

Figure 6  Multiplex immunohistochemistry analysis of the tumor immune microenvironment. Representative multiplex 
IHC images of samples from responders and non-responders in the REGONIVO and TASNIVO trials (A). Comparative 
analysis of tumor-infiltrating immune cells, CD8+ T cells (CD3+CD8+), Treg cells (FOXP3+CD3+CD8−), and M2 macrophages 
(CD206+CD11b+), was performed by multiplex IHC and HALO image analysis software between responders and non-responders 
in the REGONIVO (B) and TASNIVO (C) trials. IHC, immunohistochemistry; REGONIVO, regorafenib plus nivolumab; TASNIVO, 
TAS116 plus nivolumab.

https://dx.doi.org/10.1136/jitc-2023-008210
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DISCUSSION
To identify predictors of response to ICI combinations in 
patients with MSS or pMMR CRC, we conducted compre-
hensive biomarker analyses using WES, RNA-seq, and 
mIHC on the two investigator-initiated trials combining 
nivolumab with drugs expected to activate the immune 
response. We identified molecular features associated 
with the response to ICI combinations, particularly those 
related to tumor microenvironmental factors including 
EMT pathways and CMS4. To our knowledge, this is the 
first report to establish a multiomic molecular landscape 
of the response to ICI combinations in MSS or pMMR 
CRC.

We found that POLE mutations were significantly asso-
ciated with response in the TASNIVO trial and that no 
specific gene mutations were associated with response 
in the REGONIVO trial. POLE mutations have been 
reported to be associated with a hypermutation pheno-
type and response to anti-PD-1 monotherapy in CRC.21–24 
In this study, one patient in the TASNIVO trial with POLE 
mutations had an extremely high TMB and high CD8+ 
T-cell infiltration and low Treg cell and M2 macrophage 
infiltration. Thus, it is highly likely that the response 
achieved in the two cases with POLE mutations identified 
in the TASNIVO trial was primarily driven by nivolumab. 
However, aside from POLE mutation, no genomic 
features, including TMB, were identified as predictive 
markers for the response to ICI combinations in MSS or 
pMMR CRC in each study.

With respect to the tumor microenvironment, tran-
scriptome analysis of samples from patients in the REGO-
NIVO trial revealed upregulation of the EMT pathway 
and genes related to CAFs in responders and upregu-
lation of the MYC pathway in non-responders. Further-
more, mIHC results revealed that the density of CD8+ T 
cells, Treg cells, and M2 macrophages was significantly 
higher in responders, which was comparable to the find-
ings presented in a previous report.25

Interestingly, patients with CMS4 in the REGONIVO 
trial were associated with better clinical outcomes, which 
was not observed in the TASNIVO trial. CMS4 is charac-
terized by “mesenchymal” features, such as upregulation 
of the EMT and transforming growth factor (TGF)-β 
signaling pathways along with the high expression of 
genes associated with angiogenesis or extracellular matrix 
remodeling resulting in a high presence of CAFs,19 26 
which are known to be associated with treatment resis-
tance. Although the tumor immune microenvironment 
of CMS4 is considered “immune inflamed” with the 
presence of a higher number of infiltrating CD8+ T cells 
compared with CMS2 or CMS3,19 27 immune suppressive 
cells, such as Treg cells and M2 macrophages, which are 
involved in inhibiting cytotoxic T cells and suppressing 
the immune response,27 also infiltrated this subtype. It 
has been reported that Treg cells are recruited via CD70 
expressed on CAFs in CRC, and accumulate due to CCL28 
in the hypoxic environment caused by abnormal angio-
genesis.28 29 In the tumor microenvironment regorafenib 

leads to a decrease in Treg cells with the inhibition of 
CAF proliferation inducing apoptosis and potent anti-
angiogenic effects, which are expected to improve the 
hypoxic environment.30 31 It has also been reported that 
regorafenib inhibits TAM infiltration and M2 macro-
phage activation by blocking the TIE2 pathway, thereby 
promoting a persistent M1 phenotype.30 32 33 Indeed, 
in preclinical models, regorafenib modified the tumor 
immune microenvironments decreasing the infiltration 
of CAFs, Treg cells and M2 macrophages, thus restoring 
the antitumor activity of PD-1 inhibitors.34 35 Additionally, 
it has been reported that PDGFRA, PDGFRB, and KIT, 
which are targets of regorafenib, are highly expressed 
in CMS4 CRC and have been proposed as therapeutic 
targets.36 37 Indeed, our study found that PDGFRA was 
highly expressed in the REGONIVO trial responders, 
which is consistent with these reports. These findings 
suggest that combining regorafenib and PD-1 inhibitors 
could be effective for some CRC, specifically for the CMS4 
subtype, in which infiltrating CD8+ T cells are suppressed 
by immunosuppressive cells.

In contrast, CMS2, which accounted for more than half 
of the non-responders in the REGONIVO trial, is associ-
ated with upregulation of the MYC and WNT signaling 
pathways, low levels of tumor-infiltrating immune cells, 
and poor intertumoral immune cell activation.19 26 27 38 
Consistent with our finding that there was no correlation 
between CMS4 and REGONIVO response or a favor-
able clinical outcome in patients with liver metastases, 
preclinical models have indicated that the presence of 
liver metastases induces apoptosis in antigen-specific 
activated T cells, resulting in a systemic immunological 
desert.39 The development of further ICI combinations 
may be needed to address certain molecular subtypes and 
immune microenvironment phenotypes.

Transcriptome analysis showed upregulation of 
the G2M checkpoint pathway in the TASNIVO trial 
responders. WEE1, a client protein of HSP90, regulates 
the G2/M transition in the cell cycle by phosphory-
lating cyclin-dependent kinase 1.40 41 The AKT pathway 
and the MAP kinase cascade may be inhibited by HSP90 
blockade.42 43 Thus, the HSP90 inhibitor TAS-116 may 
exert antitumor activity in tumors with elevated G2M 
checkpoint-related genes or high expression of AKT1 
and HRAS in the TASNIVO trial. We previously reported 
that TAS-116 enhanced the antitumor activity of PD-1 
inhibitors by reducing Treg cells in vitro and in vivo.44 
However, in the present study, the significant infiltration 
of M2 macrophages in non-responders suggests that even 
if Treg cells were eliminated, the immune suppression by 
M2 macrophages could not be overcome by the HSP90 
inhibitor.

This study has several limitations. The primary limita-
tion is that this study was conducted with a limited sample 
size of patients from early clinical trials, and not all patient 
data were included in the biomarker analyses due to incon-
sistent sample availability. For example, only CMS2 and 
CMS4 were observed among patients in the REGONIVO 
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trial, probably due to the small number of included 
patients. Therefore, the presented results should be inter-
preted as preliminary, and further studies are warranted 
to validate these findings. Furthermore, because our 
analysis was performed using pretreatment samples only, 
a future comparative analysis of pretreatment and post-
treatment samples would potentially strengthen our find-
ings regarding the tumor microenvironment.43

In conclusion, we identified molecular features, partic-
ularly those related to tumor microenvironmental factors, 
that were associated with the response to REGONIVO and 
TASNIVO. Of note, CMS classification may correlate with 
the clinical outcome of REGONIVO in MSS or pMMR 
CRC. These findings may be helpful for the development 
of predictive biomarkers for precision medicine applica-
tions or new combination immunotherapies.
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