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Early mobilization in spinal cord injury promotes changes in microglial 
dynamics and recovery of motor function 
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A B S T R A C T   

In the acute phase of spinal cord injury, the initial injury triggers secondary damage due to neuroinflammation, 
leading to the formation of cavities and glial scars that impair nerve regeneration. Following injuries to the 
central nervous system, early mobilization promotes the recovery of physical function. Therefore, in the present 
study, we investigated the effects of early mobilization on motor function recovery and neuroinflammation in 
rats. Early mobilization of rats with complete spinal cord transection resulted in good recovery of hindlimb motor 
function after 3 weeks. At 1 week after spinal cord injury, the early-mobilized rats expressed fewer inflammatory 
M1 microglia/macrophages and more anti-inflammatory M2 microglia. In addition, significantly more matrix 
metalloproteinase 2 (MMP2)-positive cells were observed at the lesion site 1 week after injury in the early- 
mobilized rats. Multiple labeling studies suggested that many MMP2-positive cells were M2 microglia. MMP9- 
positive cells that highly co-expressed GFAP were also observed more frequently in the early-mobilized rats. 
The density of growth-associated protein-positive structures in the lesion center was significantly higher in the 
early-mobilized rats at 3 weeks after spinal cord injury. The present results suggest that early mobilization after 
spinal cord injury reduced the production of M1 microglia/macrophages while increasing the production of M2 
microglia at the lesion site. Early mobilization might also activate the expression of MMP2 in M2 microglia and 
MMP9 in astrocytes. These cellular dynamics might suppress neuroinflammation at the lesion site, thereby 
inhibiting the progression of tissue destruction and promoting nerve regeneration to recover motor function.   

1. Introduction 

Disorders of the central nervous system (CNS) can cause motor and 
sensory impairments that significantly disrupt daily life. Voluntary 
motor dysfunction may lead to gait disturbances and limited range of 
motion in several joints, whereas sensory impairments can lead to skin 
ulcers and dysuria, with competition by autonomic nervous system 
disorders such as smooth muscle dysfunction and neuropathic pain. 
Disorders of the CNS are thus a major therapeutic target of rehabilitation 
and neurological physical therapy. 

Although several new treatments have been developed for spinal 
cord injury (SCI) (Venkatesh, et al., 2019), rehabilitation remains a 

major component of SCI treatment. Rehabilitation for SCI has 2 main 
objectives. The first objective is to improve unimpaired physical func-
tion and maintain muscle strength for voluntary movement as much as 
possible. Maintaining muscle strength leads to increased independence 
and activity in daily life. The second objective is to prevent secondary 
complications, such as pressure ulcers and urinary tract infection, which 
can lead to septic shock and joint contractures that interfere with daily 
life. Rehabilitation approaches play an important role in maintaining a 
healthy life for SCI patients, but their effectiveness for severe sensory 
impairment and motor paralysis is limited. One reason for this is that 
most patients with SCI in the acute phase require rest and are not able to 
undergo rehabilitation. The priority in the acute phase is to stabilize the 
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1β; TNF-α, tumor necrosis factor-α; EM, early mobilization; NEM, non-early mobilization; BBB score, The Basso, Beattie, Bresnahan locomotor rating scale score; PBS, 
phosphate-buffered saline; PFA, paraformaldehyde; PBST, PBS containing 0.05% Tween 20; iNOS, inducible nitric oxide synthase; tomato lectin, Lycopersicon 
Esculentum lectin; DAPI, 4′,6-diamidino-2-phenylindole; GFAP, glial fibrillary acidic protein; GAP43, growth associated protein 43. 
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vertebrae after spinal fusion surgery and to control blood circulation 
during spinal shock. We speculated that this limitation is a major factor 
delaying the recovery of physical functions in SCI patients. 

A previous study reported that early mobilization promotes the re-
covery of physical function and quality of life in patients with stroke 
(The AVERT Trial Collaboration group). We hypothesized that early 
mobilization may also be effective for promoting the recovery of motor 
function after SCI. While Brown et al. (2011) demonstrated that very 
early exercise improves recovery of motor function in rats with SCI, the 
mechanisms underlying the recovery of motor function remain unclear 
because they did not perform complete histological assessment. In the 
present study, therefore, we applied early exercise therapy to rats with 
SCI and evaluated the recovery of motor function and histological 
changes at the lesion site in the spinal cord. 

Neuroinflammation after SCI is induced by secondary damage 
following the initial injury, and involves edema, hemorrhage, ischemia, 
infiltration of inflammatory cells, release of cytotoxic factors, and cell 
death. In the acute phase of neuroinflammation, the blood-brain barrier 
and blood-spinal cord barrier are infiltrated by proinflammatory M1 
microglia/macrophages at the site of the SCI, where they secrete several 
inflammatory cytokines and factors such as interleukin-1β (IL1β), tumor 
necrosis factor-α (TNFα), and matrix metalloproteinases (MMPs). Neu-
roinflammation also leads to the proliferation of astrocytes and micro-
glia, and enhances the production of chondroitin sulfate proteoglycans 
(CSPGs), an extracellular matrix component that inhibits axon regen-
eration. CSPGs and inflammatory cytokines secreted by activated as-
trocytes and microglia promote the formation of glial scars (Adams and 
Gallo, 2018; Dyck and Karimi-Abdolrezaee, 2015; Rolls, et al., 2008). 

Activation of M2 microglia/macrophages following the activation of 
M1　microglia/macrophages leads to neuroprotective and anti- 
inflammatory effects. Production of anti-inflammatory cytokines and 
factors such as interleukin-10 and enzymes such as arginase-1, MMP9, 
and MMP2 is suggested to promote nerve repair and regeneration 
(Ledeboer et al., 2000). MMP9 and MMP2 are involved in acute and 
subacute wound healing and glial scar formation after SCI (Hsu et, al. 
2008). Interactions between microglial activation and MMP production 
were recently suggested to suppress neuroinflammation (Bellver-Lan-
dete et al., 2019; Cunha, et al., 2016). Interestingly, early increases and 
maintenance of M2 microglia induced by exercise therapy has been re-
ported in obese rats (Jeong, et al., 2015). 

Previous animal studies showed that exercise therapy significantly 
reduces the expression of the pro-inflammatory cytokines TNFα and IL1β 
in the spinal cord in rats with contusion SCI (Dugan et al., 2020). In 
patients with chronic SCI, exercise also reduces serum levels of systemic 
inflammatory markers (Neefkes-Zonneveld et al., 2015). The involve-
ment of macrophages/microglia in the suppression of inflammation 
induced by early exercise, however, has not yet been investigated, 
although early exercise does appear to change the responses of macro-
phages/microglia in rats with SCI (Chhaya et al., 2019). We hypothe-
sized, therefore, that exercise therapy introduced during the acute phase 
of SCI in rats might suppress neuroinflammation and promote functional 
motor recovery by activating M2 macrophages/microglia, which have 
anti-inflammatory effects in association with MMP2/MMP9 dynamics. 

In this study, we performed a complete transection of the thoracic 
spinal cord to evaluate whether axonal regeneration contibutes to the 
recovery of motor function. As a model for inflammation, the transection 
injury is used less frequently than contusion injury, because the 
inflammation might be limited due to the small extent of the primary 
damage (Sharif-Alhoseini et al., 2017). On the other hand, complete 
spinal cord transection is a useful model for evaluating the relationship 
between regenerated axons beyond the lesion site and the recovery of 
motor function because sprouting of intact axons passing through the 
lesion site might be involved in the recovery of motor function in the 
other SCI models such as contusion and hemisection. 

2. Material and methods 

Wistar female rats (SLC, Hamamatsu, Japan, n = 41) were randomly 
assigned to early mobilization (EM) or non-early mobilization (NEM) 
groups. Survival periods for the EM and NEM groups were 1 week (EM; n 
= 6, NEM; n = 8), 2 weeks (EM; n = 7, NEM; n = 7), or 3 weeks (EM; n =
6, NEM; n = 7) (Fig. 1). 

Experiments were performed when the rats were 9–12 weeks old and 
weighed 130–150 g. They were housed in acrylic boxes, 2 or 3 at a time, 
in a temperature-controlled environment with a 12-h day/night cycle. 
Food and water were available ad libitum. Every effort was made to 
minimize animal suffering and to reduce the number of animals used. 
Animals that exhibited severe respiratory depression or could not drink 
water independently were killed humanely by an overdose of isoflurane 
anesthesia. The animal experimental designs were approved by the 
Institutional Animal Care and Use Committee of Animal Research Cen-
ter, Yokohama City University Graduate School of Medicine. 

2.1. Spinal cord transection operation procedures: posterior approach to 
the thoracic spine 

All rats were operated on under inhalation anesthesia with isoflurane 
(concentration: 2%). The rats were placed prone on the operating table, 
and the surgical field was cleared by shaving the dorsal body hair as 
closely as possible with electric clippers. The bilateral subscapularis 
angle and the spinous process of the L1 vertebra were identified, and a 
mark was made above each spinous process from T6 to the L1 vertebra. 
After disinfecting the surgical field with povidone-iodine solution (10% 
solution, Kaneichi Pharmaceuticals, Osaka, Japan), a 1.2-inch incision 
was made in the midline to expose the skin along the marked points, and 
a deep median dissection was performed through the superficial thor-
acodorsal fascia. The erector spinae muscles were shallowly dissected 
bilaterally, and an animal wound retractor was applied. The isoflurane 
concentration was then lowered to 1.5% to reduce hypoxia-induced 
brain damage, and the Th9, Th10, and Th11 erector spinae were 
completely dissected from both sides, and both spinous processes were 
peeled off with a scalpel (No. 15 Feather surgical blade, Feather Inc., 
Osaka, Japan). The spinous processes of Th9 and Th10 were folded with 
tweezers to expose the Th10 lamina of the vertebral arch without the 
erector spinae, and a laminectomy was performed to totally expose the 
dorsal spinal cord. Bone fragments were removed as much as possible, 
and the spinal cord at the T10 level was cut in an arc from the back (right 
side of the rat) to the front (left side of the rat) with a sharp scalpel (same 
as No. 11) to confirm that the transection of spinal cord was complete in 
both the rostral and caudal directions (Lu et al., 2012). After complete 
hemostasis was achieved, the muscle was sutured in 2 layers and the skin 
wound was closed with 6–7 sutures using a 3–0 mm nylon filament. To 
properly evaluate the effects of SCI on neuroinflammation, no antibi-
otics, analgesics, or anti-inflammatory drugs were administered. 

2.2. Postoperative management 

After the surgery, the rats were covered with bedding material in an 
acrylic cage to maintain their body temperature until they awoke. 

Fig. 1. Schematic diagram of the experiments.  
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Urination was achieved in the usual way. From the postoperative period 
until the endpoint, the bladder was emptied by the Credé maneuver 
2–3 times a day to prevent urinary tract infection and bladder injury 
causing bladder spasm. 

2.3. Early mobilization 

Early mobilization was started within 48 h after surgery and per-
formed 5 days a week for 10 min each time. Before early mobilization, 
the bladders of the rats were emptied by the Credé maneuver, and after 
the early mobilization training, the open field apparatus in the labora-
tory (20" [51 cm] wide x 40" [102 cm] high x 4" [10 cm] deep) was 
cleaned and disinfected with 70% ethanol. In the forced forelimb 
training exercise, the rat was placed with its forelimbs on a metal wire 
mesh that was easy to grasp, and allowed to move forward and back-
ward on the wire mesh using only the forelimbs. The examiner elevated 
the hind limbs off the grid while stabilizing the rat’s pelvis with the 
index finger of the right hand and holding the femurs with the left hand 
to support the hip joints, adjusting the direction to keep the rat moving. 
All treatments were performed by the same examiner (Fig. 2). 

2.4. Behavioral observation and evaluation 

The Basso, Beattie, Bresnahan (BBB) locomotor rating scale was used 
to assess hindlimb motor function. All rats in all groups were assessed for 
forward running by a skilled examiner to see what motor patterns 
emerged over a 5-min period (Basso et al. 1995). Because the motor 
patterns of the limbs are easily altered by urination and defecation, it 
was necessary to empty the bladder by performing the Credé maneuver 
before evaluating the motor function of the hindlimbs. 

2.5. Immunohistochemical examination 

2.5.1. Tissue preparation 
After behavioral assessment during the survival period, rats in the 1- 

week EM group (n = 6), 1-week NEM group (n = 8), 3-week EM group 
(n = 6), and 3-week NEM group (n = 7) were anesthetized with 5% 
isoflurane to a surgical plane of anesthesia and transcardially perfused 
with 0.9% saline (500 units of heparin/ml) from the ascending aorta to 
remove blood, followed by 25 mM phosphate-buffered saline (PBS, pH 
7.4) containing 4% paraformaldehyde (PFA). The cervical to sacral 
spinal cord was dissected out along with the vertebrae between Th7 and 
Th12, as the central part of the injury is more vulnerable. The spinal 
cords were post-fixed in 4% PFA for 24 h and then placed in 25 mM PBS 
containing 30% sucrose for at least 2 days. The spinal cord specimens 
were carefully separated from the accompanying vertebral bodies and 
arches under a stereomicroscope. After exclusion of severely damaged 
cords, the thoracic spinal cords including the lesion site of the 1-week 
EM (n = 4), 1-week NEM (n = 4), 3-week EM (n = 4), and 3-week 
NEM (n = 4) were placed in tissue freezing medium (General Data 
Company Inc., Cincinnati, OH, USA). Frozen thoracic spinal cords were 
serially sectioned into 12-μm-thick horizontal sections using a cryostat 
(CM3050 S, Leica, Nussloch, Germany), and thaw-mounted on gelatin- 
coated slides. A total of 6–8 sections were arranged on 8 sets of 
gelatin-coated slides. All sections were dried at room temperature for 
1 h and stored at − 60 ◦C until immunostaining. 

2.5.2. Immunohistochemistry staining 
The sections were fixed in 0.1 M phosphate-buffered PBS containing 

4% PFA for 30 min. They were washed in 0.025 M PBS 3 times for 5 min 
each, and in 0.025 M PBS containing 0.05% Tween 20 (PBST, pH 7.4) for 
30 min. After applying 20-fold diluted blocking reagent (Megmilk Snow 
Brand Co. Ltd., Tokyo, Japan) for 1 h, a series of sections was incubated 
overnight at 4 ◦C in a moist chamber with a mixture of primary anti-
bodies (described below), diluted in 1% normal donkey serum, 0.2% 
bovine serum albumin, and 0.1% NaN3 in 0.025 M PBST. After washing 
once with 0.025 M PBST and twice with 0.025 M PBS, the completely 
light-shielded sections were incubated with a mixture of secondary an-
tibodies (indicated below) for 90 min at room temperature. 

2.5.3. Primary and secondary antibodies 

2.5.3.1. Evaluation in the acute phase. Spinal cord sections of 1-week EM 
rats and 1-week NEM rats were used to evaluate the effects of early 
mobilization on microglia/macrophages dynamics and MMP expression 
in the acute phase. 

2.5.3.1.1. M1 and M2 microglia/macrophages. Mouse monoclonal 
antibodies against CD163 (1:100; MCA342R, Bio-Rad, Hercules, CA, 
USA) and rabbit polyclonal antibodies against inducible nitric oxide 
synthase (iNOS; 1:100; ab15323, Abcam, Cambridge, UK) were used as 
primary antibodies to label M2 microglia/macrophages and M1 micro-
glia/macrophages, respectively. Cy3-conjugated anti-mouse IgG (10 µg/ 
ml; Jackson ImmunoResearch Laboratories, West Grove, PA, USA) and 
Cy5-conjugated anti-rabbit IgG (10 µg/ml; Jackson ImmunoResearch 
Laboratories) were used as secondary antibodies, and DyLight 488-con-
jugated Lycopersicon Esculentum (Tomato) lectin (Vector Laboratories, 

Fig. 2. Early mobilization in the EM group. The rat moves forward and back-
ward on the wire mesh using only the forelimbs (arrows), while the hip joint is 
manually manipulated to keep the rat moving. 

Fig. 3. BBB scores of the NEM and EM groups were compared at 1, 2, and 3 
weeks after injury. Early mobilization significantly improved hindlimb motor 
function at 1 and 3 weeks after injury. Data are presented as mean ± SEM. * p- 
value = 0.026, * * p < 0.005. 
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Burlingame, CA, USA) was used with 4′,6-diamidino-2-phenylindole 
(DAPI) to label microglia. 

2.5.3.1.2. Activated astrocytes/MMP9. Goat polyclonal antibodies 
against glial fibrillary acidic protein (GFAP; 1:100; ab53554, Abcam) 
and rabbit polyclonal antibodies against MMP9 (1:100; 10375–2-AP; 
Proteintech, Rosemont, IL, USA) were used as primary antibodies to 
label astrocytes and MMP9-positive structures, respectively. Alexa Fluor 
647-conjugated donkey anti goat IgG (10 µg/ml; Jackson ImmunoR-
esearch Laboratories) and Alexa Fluor 488-conjugated donkey anti 
rabbit IgG (10 µg/ml; Jackson ImmunoResearch Laboratories) were 
used as secondary antibodies with DAPI. 

2.5.3.1.3. Axon regression/MMP2/resident microglia. Mouse mono-
clonal antibodies against growth associated protein-43 (GAP43; 1:500; 
ab12990, Abcam) and rabbit polyclonal antibodies against MMP2 
(1:200; 10373–2-AP, Proteintech) were used as primary antibodies to 
label growth cones and MMP2-positive structures, respectively. Cy5- 
conjugated anti-mouse IgG (10 µg/ml; Jackson ImmunoResearch Labo-
ratories) and Cy3-conjugated anti-rabbit IgG (10 µg/ml; Jackson 
ImmunoResearch Laboratories) were used as secondary antibodies, and 
DyLight 488-conjugated tomato lectin (Vector Laboratories) was used 
with DAPI to label microglia. 

2.5.3.2. Evaluation in the subacute phase. Spinal cord sections of 3-week 
EM rats and 3-week NEM rats were used to evaluate the effects of early 
mobilization on the histology of the lesion site in the subacute phase. 

2.5.3.2.1. Histochemical analysis of the lesion site. Goat polyclonal 
antibodies against glial fibrillary acidic protein (GFAP; 1:100; ab53554, 
Abcam) and rabbit polyclonal antibodies against fibronectin (1:100; 
PAA037Ga01, Cloud-Clone Corp.) were used as primary antibodies to 
label astrocytes and fibronectin-positive structures, respectively. Alexa 
Fluor 488-conjugated donkey anti rabbit IgG (10 µg/ml; Jackson 
ImmunoResearch Laboratories) and Cy3-conjugated donkey anti rabbit 
IgG (10 µg/ml; Jackson ImmunoResearch Laboratories) were used as 
secondary antibodies, and DyLight 488-conjugated tomato lectin (Vec-
tor Laboratories) was used with DAPI to label microglia. 

2.5.3.2.2. GAP43/collagenⅣ/GFAP. Mouse monoclonal antibodies 
against GAP43 (1:500; ab12990, Abcam), rabbit polyclonal antibodies 
against collagenⅣ (1:100; ab6586, Abcam), and goat polyclonal anti-
bodies against glial fibrillary acidic protein (GFAP; 1:100; ab53554, 
Abcam) were used as primary antibodies to label growth cones, collagen 
fibers, and astrocytes, respectively. Cy5-conjugated anti-mouse IgG 
(10 µg/ml; Jackson ImmunoResearch Laboratories), Cy3-conjugated 
donkey anti rabbit IgG (10 µg/ml; Jackson ImmunoResearch Labora-
tories), and Alexa Fluor 488-conjugated donkey anti goat IgG (10 µg/ml; 
Jackson ImmunoResearch Laboratories) were used as secondary anti-
bodies with DAPI. 

2.5.3.2.3. Axon regression/MMP2/resident microglia. Mouse mono-
clonal antibodies against GAP43 (1:500; ab12990, Abcam) and rabbit 
polyclonal antibodies against MMP2 (1:200; 10373–2-AP, Proteintech) 
were used as primary antibodies to label growth cones and MMP2- 
positive structures, respectively. Cy5-conjugated anti-mouse IgG 
(10 µg/ml; Jackson ImmunoResearch Laboratories) and Cy3-conjugated 
anti-rabbit IgG (10 µg/ml; Jackson ImmunoResearch Laboratories) were 
used as secondary antibodies, and DyLight 488-conjugated tomato lectin 
(Vector Laboratories) was used with DAPI to label microglia. 

(caption on next column) 

Fig. 4. Fig. 4-1. Images of quadruple staining with tomato lectin (green; A1 and 
B1), CD163 (red; A2 and B2), iNOS (violet; A3 and B3), and DAPI (blue; A4 and 
B4), as well as merged images (A5 and B5) at the lesion site. Images of the 1- 
week (1w) EM group are shown in the left row (A1-5), and those of the 1-week 
NEM group are shown in the right row (B1-5). Arrows indicate cells positive for 
both CD163 and tomato lectin. Arrowheads indicate iNOS-positive cells. Scale 
bars: 50 µm. Fig.4-2. A, B: Merged confocal images of triple staining with to-
mato lectin, CD163, and DAPI (enlarged images of Fig. 4–1 A5 and B5). Ar-
rowheads indicate cells positive for both CD163 and tomato lectin. Scale 
bars: 20 µm.,. 
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2.5.3.3. Cell counts and imaging. An average of 3 sections per slide of 1- 
week EM (n = 4) and 1-week NEM (n = 4), and 3-week EM (n=4) and 3- 
week NEM (n=4) was analyzed. All stained sections were observed with 
a scanning all-in-one fluorescence microscope (BZ-x810, Keyence Inc., 
Osaka, Japan). CD163-positive, iNOS-positive, MMP2-positive and 
MMP9-positive cells expressed in lesion site including the surrounding 
area were counted at 40x using the analyzer application. Triple immu-
nofluorescence images of CD163/ tomato lectin/ DAPI, and MMP2/ 
tomato lectin/ DAPI were also acquired with a confocal laser scanning 
microscope (Olympus Fluo View FV1000, Tokyo, Japan) at 60x. 

2.5.3.4. Void/ cavity measurement. An average of 3 sections per slide of 
3-week EM (n = 4) and 3-week NEM (n = 4) was analyzed. All stained 
sections were observed with a scanning all-in-one fluorescence micro-
scope (BZ-x810, Keyence Inc.). The area of the voids or cavities was 
measured at 10x using an analyzer application (BZ-X Analyzer, Keyence 
Inc.). 

2.5.3.5. GAP43 structure measurement. An average of 3 sections per 
slide of 3-week EM (n = 3) and 3-week NEM (n = 3) was analyzed. All 
stained sections were observed with a scanning all- in-one fluorescence 
microscope (BZ-x810, Keyence Inc.). The lesion center was defined as a 
zone negative for GFAP. The areas of the lesion center and GAP43- 
positive structures were measured at 20x using an analyzer applica-
tion (BZ-X Analyzer, Keyence Inc.). 

2.6. Data analysis 

Data collection and analysis were partially blinded. All data are 
expressed as mean ± standard error. BBB scores at each endpoint of EM 

and NEM were compared using Welch’s t-test. The number of cells 
expressing CD163 and iNOS was compared between the 1-week EM and 
1-week NEM groups using the Mann-Whitney U test. The numbers of 
cells expressing MMP2 and MMP9 were compared between the 1-week 
EM and 1-week NEM groups using the Mann-Whitney U test. The area of 
voids or cavities was compared between the 3-week EM and 3-week 
NEM groups using the Mann-Whitney U test. The areas of the lesion 
center and GAP43-positive structures were compared between 3-week 
EM and 3-week NEM groups using Welch’s t-test. A p-value < 0.05 
was considered statistically significant. The software SPSS Statistics 22.0 
(Armonk, IBM Corporation, NY, USA) was used to analyze the data. 

3. Results 

3.1. Motor function recovery; open field test 

Recovery of hindlimb motor function on the BBB rating scale differed 
markedly between groups with and without early mobilization for 3 
weeks (Fig. 3). Although both groups were completely paralyzed on the 
day of spinal cord transection, the BBB score of the EM group gradually 
increased from the first week of injury (1.5 ± 0.34 at 1 week, 3.29 
± 0.68 at 2 weeks, and 6.0 ± 0.52 at 3 weeks), whereas the improve-
ment in the BBB score of the NEM group was limited to only about 1–2 
points (0.63 ± 0.18 at 1 week, 2.5 ± 0.34 at 2 weeks, and 1.43 ± 0.30 at 
3 weeks). The BBB score significantly differed between the EM and NEM 
groups after 1 week (* p = 0.026) and 3 weeks (** p < 0.005). Each 
endpoint of the BBB score is shown in the Supplementary video data. 

Fig. 5. A: Overview of the spinal cord 
in the 1-week EM group. Tomato lectin- 
positive cells accumulated in the lesion 
center but are also observed in the sur-
rounding area. Scale bar: 500 µm. B: 
Comparison of the number of cells pos-
itive for CD163 and tomato lectin at the 
lesion site including the surrounding 
area between the 1-week NEM and 1- 
week EM groups. Data are presented as 
mean ± SEM. No significant difference 
was detected between the 2 groups. C: 
Comparison of the number of iNOS- 
positive cells at the lesion site between 
the 1-week NEM and 1-week EM 
groups. Data are presented as mean 
± SEM. * p-value= 0.029.   
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Fig. 6. A, B: Images of triple staining with 
MMP9 (green; A1 and B1), GFAP (red; A2 and 
B2), and DAPI (blue; A3 and B3), as well as 
merged images (A4 and B4) at the lesion site. 
Images of the 1-week EM group are shown in 
the right row (A1-4), and those of the 1-week 
NEM group are shown in the left row (B1-4). 
Arrowheads show cells positive for both 
MMP9 and GFAP. Scale bars: 50 µm. C: 
Comparison of the number of MMP9-positive 
cells at the lesion site including the sur-
rounding area between the 1-week NEM and 
1-week EM groups. Data are presented as 
mean ± SEM. No significant difference was 
detected between the 2 groups. D: Overview 
of the spinal cord in the 1-week NEM group. 
GFAP-positive fibers were observed in the 
surrounding area, but not at the lesion center. 
Scale bar: 500 µm.   
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3.2. Immunohistochemical analysis in the acute phase 

3.2.1. CD163/ iNOS/ tomato lectin/ DAPI 
Quadruple staining for tomato lectin, CD 163, iNOS, and DAPI was 

performed (Fig. 4–1). Many cells in the lesion site were positive for to-
mato lectin and DAPI (Fig. 4–1 A, B). Tomato lectin- and DAPI-positive 
cells were resident microglia. Many CD163-positive cells were also 
positive for tomato lectin and DAPI with confocal microscopic obser-
vation (Fig. 4–2 A, B). These triple-positive cells were considered to be 
M2 microglia. 

Many cells were positive for iNOS and DAPI. Few of these cells, 
however, were positive for tomato lectin (Fig. 4–1 A, B). Therefore, we 
considered the iNOS-positive and DAPI-positive cells to be M1 micro-
glia/macrophages. 

The number of cells positive for CD163 and tomato lectin at the 
lesion site tended to be higher in the 1-week EM group (19.75 ± 4.67) 
than in the 1-week NEM group (12.92 ± 3.57), although no significant 
difference was observed between the 2 groups. The number of iNOS- 
positive cells at the lesion site was significantly lower in the 1-week 
EM group (6.42 ± 1.25) than in the 1-week NEM group (39.5 ± 13.1). 
(Fig. 5B, C). 

3.2.2. MMP9/ GFAP/ DAPI 
Triple staining for MMP9, GFAP, and DAPI was performed (Fig. 6). 

MMP9-positive cells were observed in the surrounding areas, where 
some MMP9-positive cells were also positive for GFAP, whereas few 
MMP9-positive cells were present in the lesion center. The number of 
MMP9 positive cells in the lesion sites tended to be higher in the 1-week 
EM group (14.25 ± 6.14) than in the 1-week NEM group (1.5 ± 0.67), 
although the difference between the 2 groups was not significant. 

3.2.3. MMP2/ GAP43/ tomato lectin/ DAPI 
Quadruple staining for tomato lectin, MMP2, GAP43, and DAPI was 

performed (Fig. 7–1). The number of MMP2-positive cells was signifi-
cantly higher in the 1-week EM group (251.5 ± 53.05) than in the 1- 
week NEM group (57.25 ± 16.89). Most of MMP2-positive cells were 
also positive for tomato lectin with confocal microscopic observation 
(Fig. 7–2 A, B). 

In both 1-week EM and NEM groups, GAP43-positive structures were 
observed in rostral and caudal regions of the lesion site but not passing 
through the lesion site, and less frequently in the lesion center. 

3.3. Immunohistochemical analysis in the subacute phase 

3.3.1. Tomato lectin/ GFAP/ fibronectin/ DAPI 
Quadruple staining for tomato lectin, GFAP, fibronectin, and DAPI 

was performed (Fig. 8). In the 3-week EM and NEM groups, a fibrous 
scar formed in the lesion center that was surrounded by glial tissue 
strongly positive for GFAP. Large voids or cavities were observed mainly 
in the surrounding area, but small voids were observed in the lesion 
center (Fig. 8). Many fibronectin-positive cells were observed in the 
surrounding area, but not in the lesion center. Tomato lectin-positive 
microglia were also observed in the surrounding area adjacent to 

(caption on next column) 

Fig. 7. Fig. 7-1. A, B: Images of quadruple staining with tomato lectin (green; 
A1 and B1), MMP2 (red; A2 and B2), GAP43 (violet; A3 and B3), and DAPI 
(blue; A4 and B4), as well as merged images (A5 and B5) at the lesion site. 
Images of 1-week EM group are shown in the left row (A1-5), and those of the 1- 
week NEM group are shown in the right row (B1-5). Arrowheads indicate cells 
positive for both tomato lectin and MMP2. Arrows indicate GAP43-positive 
structures. Scale bars: 50 µm. Fig.7-2. A, B: Merged confocal images of triple 
staining with tomato lectin, MMP2, and DAPI (enlarged images of Fig. 7–1 A5 
and B5). Arrowheads indicate cells positive for both MMP2 and tomato lectin. 
Scale bars: 20 µm. C: Comparison of the number of MMP2-positive cells at the 
lesion site including the surrounding area between the 1-week NEM and 1-week 
EM groups. Data are presented as mean ± SEM. * p-value = 0.029. 
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some of the voids or cavities (Fig. 8A, B). The area of the voids or cavities 
was significantly smaller in the 3-week EM group (100735.7 
± 31951.6 µm2) than in the 3-week NEM group (587473.0 
± 170683.5 µm2). 

3.3.2. GAP43/ collagen/ GFAP 
Triple staining for GAP43, collagen, and GFAP was performed 

(Fig. 9). The area of GAP43- positive structures in the lesion center 
tended to be larger in the 3-week EM group (112542.9 ± 23355.7 µm2) 
than in the 3-week NEM group (63738.6 ± 26833.3 µm2), although the 
difference between the 2 groups was not significant. On the other hand, 
the area of the lesion center was significantly smaller in the 3-week EM 
group (577777. 0 ± 94213.9 µm2) than in the 3-week NEM group 
(902203.4 ± 77381.1 µm2). The density of GAP43-poisitive structures 
per lesion center, therefore, was significantly higher in the 3-week EM 
group (19.66 ± 4.02%) than in the 3-week NEM group (7.20 ± 3.46%). 

3.3.3. MMP2/ GAP43/ tomato lectin/ DAPI 
Quadruple staining for tomato lectin, MMP2, GAP43, and DAPI was 

performed (Fig. 10). In the 3-week EM groups, many GAP43-positive 
structures were observed in the area surrounding the lesion site where 
many tomato lectin-positive microglia were observed. Some GAP43 
positive fibers ran through zones with no voids or cavities in the sur-
rounding area (Fig. 10 A-5). In the 3-week NEM group, GAP43-positive 
fibers were also observed in the area surrounding the lesion site, but 
there was reduced space for the fibers to pass through due to the large 
cavities there (Fig. 9 B-5). GAP43-positive fibers passing though the 
fibrous lesion center were not observed in the 3-week EM and NEM 
groups. 

4. Discussion 

The present study showed that early mobilization was effective for 
the recovery of motor function. Previous studies reported that the effect 
of early mobilization on motor function recovery in rats with SCI is 

equivalent to that of anti-inflammatory drugs administered at the time 
of SCI (Alizadeh, et al. 2017; Zhang et al. 2019). Although the contusion 
injury model and complete transection model differ in many aspects, the 
findings of the present study demonstrated that early mobilization leads 
to the recovery of motor function after transection by regulating the 
immune response at the lesion site in the same way. 

In the present study, we observed a trend toward a greater accu-
mulation of cells positive for CD163 and tomato lectin at the lesion site 
in the EM group than in the NEM group at 1 week after injury. In 
addition, there were significantly fewer iNOS-positive cells at the lesion 
site in the EM group than in the NEM group at 1 week after injury. These 
observations suggest that early mobilization promoted the reduction of 
M1 microglia/macrophages and an increase in M2 microglia at the 
lesion site. In general, M1 microglia/macrophages are thought to pro-
mote neuroinflammation, while M2 microglia/macrophages suppress 
neuroinflammation. Therefore, early mobilization might contribute to 
the recovery of motor function by suppressing neuroinflammation in the 
injured tissues. 

In SCI mice, MMP2 expressed at the lesion site is considered to be 
involved in the suppression of glial scar formation, degradation of 
fibrous scars, and removal of degenerated axons (Duchossoy, et al., 
2001; Hsu, et al., 2006). In the present study, significantly more 
MMP2-positive cells were present at the lesion site at 1 week after injury 
in the EM group than in the NEM group. Early mobilization, therefore, 
might promote an increase in MMP2-positive cells at the lesion site. The 
finding that many of the MMP2-positive cells were also positive for to-
mato lectin suggests that MMP2 is expressed in microglia. Furthermore, 
tomato lectin-positive cells were frequently co-expressed with CD163, 
but not iNOS, suggesting that M2 microglia, but not M1 micro-
glia/macrophages, express MMP2. The present results suggest that the 
increase in M2 microglia and decrease in M1 microglia/macrophages at 
the lesion site 1 week after injury correlated with the increase in MMP2, 
which might contribute to inhibit neuroinflammation and provide a 
favorable tissue environment for regenerating axons. 

While the activity of MMP2, a subacute inflammatory mediator, 

Fig. 8. A, B: Merged Images of quadruple staining with tomato lectin (green), GFAP (yellow), fibronectin (red), and DAPI (blue) at the spinal cord injury lesion. 
Image of the 3-week EM group is shown in A and that of the 3-week EM group is shown B. Red line enclosure indicates the void/cavity area. Scale bars: 100 µm. C, E: 
Overview of the spinal cord of the 3-week EM group (C) and the 3-week NEM group (E). Scale bars: 500 µm. D: Comparison of the void/cavity area at the spinal cord 
lesion sites between the 3-week NEM and 3-week EM groups. Data are presented as mean ± SEM. * p-value= 0.029. 
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persists until 21 days after injury, the activity of MMP9 peaks at 1 day 
after injury and gradually declines within 14 days after injury, sug-
gesting that MMP9 is an acute inflammatory mediator (Goussev, et al. 
2003; Chiu, et al. 2018). In addition, in mice with SCI, MMP9 is upre-
gulated in astrocytes and contributes to the formation of glial scars (Hsu 
et al., 2006, 2008; Trivedi et al., 2016, 2019). In the present study, 
MMP9-positive cells were mainly located in the surrounding area, where 
GFAP was frequently positive, suggesting that MMP9 is expressed in 
astrocytes and is involved in glial scar formation after SCI in rats. 
Furthermore, the finding that MMP9-positive cells tended to accumulate 
more in the EM group than in the NEM group might suggest that early 
mobilization promotes glial scar formation. As described before, how-
ever, early mobilization might also promote the accumulation of 
MMP2-positive cells at the lesion site. The effect of glial scar formation 
by MMP9, therefore, might have been attenuated by the activity of 
MMP2-positive cells, because MMP2 has inhibitory effects on glial scar 
formation. 

In the present study, early mobilization resulted in the recovery of 
lower limb motor functions, but the mechanism is not clear. The pres-
ence of many GAP43-positive structures at the lesion site in the EM 
group suggests that regenerating axons frequently enter the lesion site in 
the subacute phase. The increase in M2 microglia accompanied by the 
upregulation of MMP2 at the lesion site 1 week after injury with early 
mobilization might have reduced neuroinflammation and increased the 
number of regenerating axons. In the EM group, furthermore, the areas 

of the lesion center and the voids/cavities were smaller at 3 weeks after 
injury, suggesting that the tissue damage was minimized. At the same 
time, many GAP43-positive structures passed through the intercellular 
spaces of microglia. M2 microglia are suggested to regulate the micro-
environment at the site of injury and induce regenerating axons (Zhou 
et al. 2020). Therefore, M2 microglia-mediated repair of injured tissues 
might play an important role in the recovery of motor function promoted 
by early mobilization. 

Although the present study did not provide the clear evidence of 
regenerating axons passing through the fibrous lesion center, it is 
possible that descending spinal projections such as the corticospinal 
tract regenerate beyond the lesion site to project to the lumbo-sacral 
spinal motor area within 3 weeks after SCI. A study in which treadmill 
training was combined with the administration of an enzyme that di-
gests CSPGs, however, demonstrated that corticospinal tracts did not 
regenerate beyond the lesion area (Shinozaki, et al. 2016). On the other 
hand, another study demonstrated that treadmill training changes the 
plasticity of lumbar spinal neurons, particularly activating interneurons 
by increasing the peripheral sensory projections (Tillakaratne, et al. 
2010). In sciatic nerve injury models, a significant increase in M1 
microglia in the dorsal lumbar spinal cord leads to plastic changes in 
spinal cord neurons (Xu, et al. 2016; Nishihara, et al. 2020). Therefore, 
early mobilization might affect the dynamics of microglia and MMPs at 
the lumbar spinal cord level as well as at the lesion site, and thus might 
be involved in the recovery of hindlimb motor function. 

Fig. 9. A, B: Merged Images of quadruple staining with GFAP (green), GAP43 (white), and collagenⅣ (red) at the spinal cord injury lesion. Image of the 3-week EM 
group spinal cord lesion site overview is shown in A. Scale bar: 200 µm. The lesion center is enclosed by the white dotted line. B: Enlargement image of spinal cord 
lesion. Yellow arrows indicate representative GAP43 structures (white). The border of lesion center is indicated by the yellow dotted line. Scale bars: 50 µm. C: 
Comparison of the area of GAP43 structures and lesion center between the 3-week NEM and 3-week EM groups. Data are presented as mean ± SEM. * p-val-
ue= 0.011. D: Comparison of the GAP43 density of lesion center between the 3-week NEM and 3-week EM groups. Data are presented as mean ± SEM. 
* p-value= 0.016. 
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A limitation of this study is that it is based on immunohistological 
evaluation at the lesion site and not a molecular assay. In addition, the 
effect of exercise therapy on the formation of CSPGs and glial scars was 
not evaluated. Furthermore, the cavity formation due to neuro-
inflammation was not evaluated in the lesion site. The cavities are sur-
rounded by reactive astrogliosis (Kwiecien et al., 2021). Double 
immuno-staining for CS-56, a pan marker of CSPGs, and GFAP, a marker 
for reactive astrocytes, would be necessary for further experiment to 
identify cavities and voids in the damaged area (Li, et al. 2020). Further 
additional studies are also needed to validate the molecular mechanisms 
of neuroinflammation and the histological changes in the lumbar region 
to confirm the efficacy of early mobilization. 

5. Conclusion 

Early mobilization of rats with spinal cord injury led to a decrease in 
the number of M1 microglia/macrophages and an increase in the 
number of M2 microglia expressing MMP2 at the acute lesion site. These 
changes might contribute to the recovery of hindlimb motor function. 
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