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The positronic bound state for the non-polar carbon disulfide (CS2) was experimentally identified,
while previous theoretical investigations, which dedicated to studying the positronic CS2 monomer,
cannot reasonably reproduce the experimentally measured positron affinity. In the present study, we
performed analysis of the vibrational averaged positron affinity for the positronic CS2 dimer, [C2S4;
e+], using the Hartree-Fock and configuration interaction level of multi-component molecular orbital
method combined with the self-consistent field level of vibrational variational Monte Carlo method.
We obtained that the equilibrium structure of the non-polar C2S4 can have the positronic bound
state with the positron affinity of about 46.18 meV in configuration interaction level while 0 meV
in Hartree-Fock level. Furthermore, by taking into account the vibrational effect, we succeeded
in reproducing the resonant positron kinetic energies lying close to the experimental value, where
the vibrational averaged positron affinity becomes greater with increased dipole moment and dipole
polarizability. We also showed possible mechanisms effectively to enhance the resonant positron
capture for [C2S4; e+], associated with both infrared active and infrared inactive vibrational modes.

1 Introduction
Positron interactions with the molecule have been studied due to
interests in many fields, such as, fundamental antimatter physics
and chemistry1,2, molecular and materials science3,4, biomedi-
cal applications5,6, and so on. In particular, low energy positron
ionization technique for organic molecules has the potential to
realize new field of mass spectromerty3. In the last few decades,
both theoretical and experimental sides as well as their combined
approach have provided evidences for the existence of the (meta-
stable) positron–molecule bound states for the various complex
species. The low-energy positron beam technique, which has
been developed by Surko’s group, have successfully measured
the positron annihilation spectra and identified the positron–
molecular complexes for a number of molecular species7–12, in-
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volving some weakly- and non- polar molecular species. Gribakin
and Lee have developed a practical theory systematically to de-
scribe the observed annihilation spectra based on the resonant
mechanism for the positron capture13,14. Their theoretical de-
scription combined with the experimental simulations obtained
the important chemical trends related to the molecular electro-
static properties: for non-polar or weakly-polar molecules, the
dipole polarizability becomes an important parameter15,16 con-
cerning the dipole field induced by the positron attachment, while
for strongly-polar molecules, the permanent dipole moment also
has a significant contribution to the positron binding17. The
ab initio theoretical studies have performed the direct calcula-
tions of the positron binding energy (the positron affinity, PA)
mostly for the polar molecules or clusters, such as, for exam-
ple, cyanides18,19, nitriles20, biological molecules21,22, hydrated
clusters23 and so on. Several years ago, the positron resonant
annihilation on the non-polar CS2 molecule was observed exper-
imentally24, where positron beam with the kinetic energy 115
meV shows resonance peak and this result was interpreted that
CS2 has the positronic bound state with the positron binding en-
ergy of 75 meV. Ab initio theoretical studies has attempted to re-
produce the experimental data to figure out the positron bind-
ing mechanism; immediately, the positron binding ability of the
CS2 monomer was investigated, and the direct calculation for
the positron affinity provided almost zero at the equilibrium CS2
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molecule. This result predicts not to form a positronic bound state
and is quite in disagreement with the experimental fact. Further-
more, the vibrational averaged PA was analyzed to take the effect
of the vibrationally induced dipole moment into account25. This
work offered us that vibrationally excited states have a crucial
role to enhance the positron affinity for the non-polar CS2 system,
but the vibrational averaged PA of about 2–5 meV was too small
to rationalize the experimental results and corresponding reso-
nance positron kinetic energy estimated is 190 meV, which is far
from experimental result 115 meV. Thus, early theoretical studies
with focus on the individual CS2 molecule failed in quantitativity,
and the issue for the positron binding ability of the gas-phase CS2

still remains an open question. In more recent years, importantly,
the carbon disulfide dimer C2S4 and trimer C3S6 were observed
in gas-phase by pulsed supersonic slit-jet experiments26,27. The
positron interacting with such CS2 clusters may be invoked for
the feasibility for the existence of the positronic carbon disulfide
complex.

In the present study, we investigate the positron binding ability
of C2S4 in compared to that of CS2 by means of the ab initio theo-
retical method. In order to figure out the dynamical effect to the
positron binding ability of C2S4, we calculate the vibrational aver-
aged PA for the dimer by applying the multi-component molecular
orbital (MC_MO) method combined with the variational Monte
Carlo method to solve the (excited) vibrational state wave func-
tions. We describe the important definition equation and the ab
initio method we applied in the following section.

2 Theory
2.1 Vibrational averaged PA and other properties

On the basis of the vibrational Feshbach resonance (VFR) for the
positron attachment to the molecule13,14, the resonant positron
kinetic energy Kν can be evaluated by

Kν = Eν −PAν , (1)

where Eν is the excitation energy from vibrational ground state
to ν-th vibrational excited state and PAν is the positron affinity
of ν-th vibrational excited state. In this work, we obtain the vi-
brational eigenstates for a molecule by adopting the rovibrational
Hamiltonian by Watson28, and seek PA values depending on the
molecular vibrational states. PAν is represented by vibrational
averaged scheme as follows. For arbitrary property A, vibrational
averaged property Aν is defined as,

Aν =

∫
A(QQQ)|Ψν (QQQ)|2 dQQQ∫

|Ψν (QQQ)|2 dQQQ
, (2)

where A(QQQ) is scalar property at the geometry of QQQ and Ψν (QQQ)

is the vibrational wavefunction. This equation means weighted
average of A using a weight with |Ψν (QQQ)|2.

Vibrational averaged property of single mode νi is also impor-
tant and defined as

Aνi =

∫
A(Qi)|Ψν (Qi)|2 dQi∫

|Ψν (Qi)|2 dQi
, (3)

where Qi is the i-th normal vibrational coordinate. PA(QQQ) is de-

fined as

PA(QQQ) = E [A] (QQQ)−E [A;e+] (QQQ) , (4)

where E [A] (QQQ) and E [A;e+] (QQQ) are the total energies at the nor-
mal mode coordinates QQQ for the parent molecule A and its
positronic compound

[
A;e+

]
, respectively. The leptonic state at

the fixed nuclear configuration is obtained by solving the leptonic
Schrödinger equation ĤlepΨ(rrr;QQQ) = ElepΨ(rrr;QQQ), and the vibra-
tional states is obtained by solving the Schrödinger equation for
the vibrational nuclear motions with the effective Hamiltonian
Ĥvib, i.e., the eigenvalue equation as ĤvibΨν (QQQ) = EνΨν (QQQ).

2.2 Multi-component molecular orbital method

For the calculation of the total energy for the leptonic system, we
used the MC_MO method29. The non-relativistic leptonic Hamil-
tonian for the system containing Ne electrons, Nnuc nuclei, and a
positron is written as

Ĥlep = − 1
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, (5)

where the first and the second terms are the kinetic energy
operators for the electrons and the positron, respectively, the
other terms are the Coulomb interactions: ZI is the charge
of the I-th nucleus and ri j, rip, etc. are the interparticle dis-
tances. The configuration interaction (CI) expansion for the
multi–component wave function can be represented as |Ψ CI⟩ =
∑Le,Lp |Φ

e
Le
⟩|Φp

Lp
⟩CLeCLp , where CLx is the Lx-th CI coefficient for

Lx–th configuration, Φx
Lx

, for the particle kind x; x = e (electron)
and p (positron). The CI energy, ECI is written as

ECI = ∑
Le,Lp

∑
L′

e,L′
p

CLeCL′
e
CLpCL′

p
⟨Φp

Lp
|⟨Φe

Le
|Ĥlep|Φe

L′
e
⟩|Φp

L′
p
⟩. (6)

In above formalism, if we consider only the first term of the
CI wave function with CLeCLp = 1, we can derive the Hartree-
Fock (HF) equation of the multi-component molecular orbital
method, and then the HF total energy is given by EHF =

⟨Φp
0 |⟨Φ

e
0 |Ĥlep|Φe

0⟩|Φ
p
0 ⟩. We utilized the McMurchie-Davidson

method30 for integral calculations, and applied the graphical uni-
tary group approach (GUGA) technique31 to evaluate the CI ma-
trix elements in Eq. (6).

Parent molecule absolute dipole moment µ and isotropic dipole
polarizability α are calculated by HF method and vibrational aver-
aged values of them are estimated by Eq.2 . Here, isotropic dipole
polarizability α =

(
αxx +αyy +αzz

)
/3, where x, y, and z denote the

axes of cartesian coordinate system and αiis correspond to the po-
larize property along i-direction under applied electronic-field in
the i-direction.

2.3 Vibrational variational Monte Carlo method

The vibrational wave function for the parent molecule A was re-
solved in the adiabatic approximation via the Hamiltonian by
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Watson28, where the eigenfunction for the system Φν (rrr,RRR) can
be separable into the vibrational wave function and the (static)
electronic wave function at the fixed nuclei:

Φν (rrr,RRR) =Ψ vib
ν (RRR) ·Ψ e(rrr;RRR), (7)

where the suffix for the eigenstate of the leptonic part is omitted,
and the external potential energy is formed by the electronic wave
function Ψ e(rrr;RRR). We used the vibrational self-consistent field
(VSCF) method to obtain the vibrational eigenstates, |Ψ vib

ν (QQQ)⟩.
The trial vibrational wave function within the constraint of the
single Hartree product is given by a product of the modal func-
tions,

Ψ vib
ν (QQQ) =

M

∏
i=1

ψνi(Qi), (8)

where M is the number of the vibrational modes, and ψνi(Qi) is
the i-th single-mode wavefunction. ψνi(Qi) may be expressed as a

linear combination of the mode-specific basis functions χ(i)
n (Qi):

ψνi(Qi) =
Ni

∑
n=1

C(i)
n χ(i)

n (Qi), (9)

with the expansion coefficients {C(i)
n }. In this work, we adopted

the harmonic oscillator functions as the basis functions χ(i)
n (Qi):

χ(i)
n (Qi) = hn−1

(√
ε(i)(Qi −Q(i)

c )
)

exp

(
− ε(i)

2
(Qi −Q(i)

c )2

)
, (10)

where hn(ξ ) is the n-th Hermite polynomial, and Qi is the i-th
(generalized) internal coordinate corresponding to the center of
the harmonic oscillator in the basis function. By optimizing the
trial wave function Eq.(8), we obtain the energy eigenvalue for
the vibrational state ν , described as

Eν =
⟨Ψ vib

ν |Ĥvib|Ψ vib
ν ⟩

⟨Ψ vib
ν |Ψ vib

ν ⟩
=

∫
EL(QQQ)|Ψ vib

ν (QQQ)|2dQQQ∫
|Ψ vib

ν (QQQ)|2dQQQ
, (11)

where Ĥvib is the rovibrational Hamiltonian by Watson28, and
EL(QQQ) =Ψν (QQQ)−1ĤvibΨν (QQQ) is the local energy.

In our VSCF calculation, the vibrational states are resolved by
fulfilling the fully-variational optimization for the modal wave
functions ψνi(Qi), i.e., all the variational parameters, C(i)

n , ε(i),
and Q(i)

c are optimized, as minimizing the expectation value of
the local energy EL(QQQ) by the variational Monte Carlo technique
in cooperation with the linear optimization method32.

3 Computational details
In order to figure out the positron binding abilities of the equi-
librium CS2 dimer, we first calculated the vertical PA values at
the equilibrium geometries. The geometry optimizations were
performed using the coupled cluster singles and doubles (CCSD)
method with Dunning’s augmented correlation-consistent polar-
ized valence double zeta (aug-cc-pVDZ) basis set for CS2 dimer.
The geometry optimization were performed using Gaussian 16
package33.

The leptonic total energies for both positronic compounds

within the Born-Oppenheimer approximation were calculated us-
ing both HF and CI singles and doubles (CISD) levels of the
MC_MO framework, where CISD in this work stands for the
configuration interactions arising from single electronic, single
positronic, and both single electronic–single positronic excita-
tions to take account of the important electron–positron corre-
lation effect. We employed the 6-31+G(2d f ) basis set and [1s1p]
Gaussian type diffuse functions for the electrons, where the ex-
ponents of 0.06 were chosen for the [1s1p] diffuse functions.
For the positronic part, we employed [18s15p6d4 f 2g] Gaussian
type functions (GTFs): [6s5p6d4 f 2g], [4s3p], and [1s1p] are lo-
cated at the center of mass, two carbon nuclei, and four sulfur
nuclei, respectively. These exponents were determined by the
even-tempered scheme, αi+1 = c×αi with c =

√
10, where α1 =√

10×10−4,
√

10×10−3,
√

10×10−3,
√

10×10−2, and
√

10×10−2

for s-, p-, d-, f -, and g- type functions of [6s5p6d4 f 2g], respec-
tively, α1 = 0.1 for both s- and p- type functions of [4s3p], and
α1 = 1 for both s- and p- type functions of [1s1p]. Both HF and CI
calculations of MC_MO were performed using FVOPT program29.
In the VSCF procedure for the CS2 dimer, the normal mode vibra-
tional coordinates QQQ are obtained by harmonic analysis via the
same level of abinitio calculations as the geometry optimizations.
The CS2 dimer has twelve normal vibrational modes as shown
in Table 1, where νi represents the vibrational quantum number
for the i-th normal mode vibration. We show schematic repre-
sentations for the vibrational modes, particularly, ν1, ν9, ν10, and
ν11, which are considered to mainly contribute to the vibrational
resonant positron capture to be discussed in the following dis-
cussion. The global potential energy surface (PES) of CS2 dimer
is calculated by interpolating potential energy values at discrete
grid points in vibrational configuration space expanded with the
normal mode vectors. In principle, a twelve-dimensional PES is
required to take all inter-mode couplings between modes into
accounts for this molecule. High-dimensional couplings in PES,
however, generally give negligible contributions despite tremen-
dous computational costs. To reduce computational costs, we
used the n-mode representation technique proposed by Carter et
al.34, in which the approximate PES is expressed by truncating
higher-order coupling terms. To construct an approximate PES
for CS2 dimer, we employed the three-mode representation in-
cluding coupling terms up to the second order. The potential en-
ergy at each grid point was calculated at the same abinitio level as
the geometry optimization and normal mode analysis. The total
number of grid points is 49969. All the variational parameters
of the basis functions were optimized with respect to the ground
vibrational state, but only the expansion coefficients were opti-
mized for all the excited vibrational states. All VSCF calculations
were performed using our in-house vibrational quantum Monte
Carlo program35.

For evaluations of the resonant positron kinetic energies based
on Eq.(1), we mapped vertical PA surface on the normal mode
coordinates QQQ from the total energy maps obtained by CI level
calculations with the spline interpolation. In this procedure, ap-
propriate 169 grids were selected to reduce the computational
demands.

To understand the effect of µ(QQQeq), α(QQQeq) where QQQeq denotes
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Table 1 Normal vibrational modes νi and corresponding vibrational energies Eνi and infrared (IR) intensities Iνi for the CS2 dimer with CCSD/aug-cc-
pVDZ level of calculation. Energies and IR intensities are given in units of cm−1 and arb. unit, respectively.

Vibrational
Vibrational modes Eνi Iνimode representation

ν1 Rotational-twisting 15.94 0
ν2, ν3 Wagging 32.36 0.01

ν4 CC intermolecular stretching 44.32 0
ν5 B2 symmetric SCS bending 376.13 5.02

ν6, ν7 E symmetric SCS bending 379.54 2.88
ν8 A1 symmetric SCS bending 380.61 0
ν9 B2 symmetric CS stretching 675.53 0.02
ν10 A1 symmetric CS stretching 675.66 0

ν11, ν12 Asymmetric CS stretching 1540.26 785.12

equilibrium geometry, µν , and αν based on Eq.(2), we calculated
µ(QQQ) and α(QQQ) on the normal mode coordinates QQQ by the HF/6-
31+G(2d f ) level of calculation. In this procedure, appropriate
49969 grids were selected.

4 Results and Discussion
4.1 Equilibrium structure for positronic CS2 dimer

The equilibrium structure, the electrostatic molecular properties,
and the positron affinity for C2S4 are shown in Table 2. De-
tailed calculation results for the potential energy curves can be
found in Figure S1 (ESI†). In order to discuss the positron bind-
ing ability for C2S4 relative to its constituent monomer CS2, we
here refer to the same properties for CS2 presented by Takeda et
al.’s work25. The individual CS2 system has a D∞h highly sym-
metric linear geometry, which has no permanent dipole moment
µ. As we mentioned above, the equilibrium CS2 was predicted
not to have a positive PA (i.e., no positron binding ability) in the
equilibrium state. On the other hand, C2S4 has a D2d symmetri-
cal cross-shaped geometry with the equilibrium CC interatomic
distance RCC = 3.65 Å. Our optimized structure shows reason-
able agreement with the experimentally measured CC distance,
RCC = 3.539 Å26, and the CS2–CS2 intermolecular binding energy
Eint = 2.07 kcal/mol = 723 cm−1 is also consistent with 773 cm−1

resulted from the earlier calculation using the model potential36.
For the [C2S4; e+] system, HF level calculation predicted PA = 0,
whereas by inclusion of the electron-positron correlation effect
via CI method, PA drastically increases to 46.18 meV. Convention-
ally, it has been considered that for strongly-polar molecules the
large permanent dipole moment is favored in binding a positron,
while for non- and/or weakly-polar molecules, the dipole polar-
izability becomes an important parameter related to the electro-
static field induced by the positron attachment. For the case of
C2S4, the two times larger dipole polarizability α in compared to
CS2 may play an important role for the ability to bind a positron.

As shown in Table 2, atomic charges obtained by the natural
bond orbital analysis are −0.256 for a carbon atom and 0.128
for a sulfur atom for the C2S4 system. These charge separa-
tions for every CS2 unit are smaller rather than the individual
CS2 system, but the total charge distribution due to forming the
dimer may have an influence on the interaction with a positron.

The positron density distribution for the positronic bound state of
[C2S4; e+] is shown in Figure 1 (a). The bound positron appears
as a saddle-like shape around CS2–CS2 intermolecular axis, where
indeed, the bound positron seems to evade positively charged sul-
fur atoms and to extend around negatively charged carbon atoms.
Such a positron binding feature looks to be quite different to
extents of the (loosely) bound positrons for the positronic po-
lar systems; the positron density maximum tends to be located
near the partially negatively charged atom(s) as contributing the
gross dipole moment of the parent systems, and the distribution
is often delocalized around the negatively electrostatic molecular
potential. For the present [C2S4; e+] system, characteristics of
the electronic structure related to the positron attatchement may
help better understanding of the positron density distribution: We
evaluated the electron density difference ∆ρe(rrr) induced by the
positron attachment to C2S4, given as

∆ρe(rrr) = ρe (rrr; [C2S4; e+]
)
−ρe (rrr; [C2S4]) , (12)

where ρe (rrr; [X]) is the total electron density for the system X at
the equilibrium nuclear geometry. In order to figure out the differ-
ence on properties for HF and CI, we here used ρe (rrr; [CS2]) calcu-
lated by HF, and obtained ρe (rrr; [X]) using ρe (rrr; [C2S4; e+]

)
calcu-

lated by both HF and CI. Using the HF density for ρe (rrr; [C2S4; e+]
)

resulted in |∆ρe(rrr)|< 10−7e– · bohr−3 at a maximum. This means
that in the HF level of the theory, significant relaxation due to the
positron attachment does not occur. In contrast, in the CI level, as
shown in Figure 1 (b), the electron density depletion ∆ρe(rrr) < 0
(blue isosurfaces) can be found in the vicinity of all sulfur atoms
in the outer region, while the density enhancement ∆ρe(rrr) > 0
(red isosurfaces) can be found in the inner region of the C2S4 clus-
ter. In particular, significantly increased electron density around
the CC internuclear axis shows the partial polarization as favored
in attracting a positron, which can be reproduced by inclusion
of the electron-positron correlation effect via the CI level calcula-
tion.

According to our evaluation for the resonant positron kinetic
energy Kν from a rough treatment by PAν ∼ PA(QQQeq) in Eq.(1)
as a crude approximation, where non-degenerate four vibrational
modes are assumed, two IR active modes for C2S4 as the first
candidates for the vibrational resonance, ν = 4572 and 4601 cm−1,
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Table 2 The equilibrium geometries, the electrostatic constants, and the positron affinities for the monomer CS2 and the dimer C2S4. The equilibrium
CS and CC distances, RCS and RCC, are given in units of Å, and the intermolecular binding interaction energy Eint is shown in units of kcal/mol only
for C2S4. The dipole moment µ and the polarizability α are given in units of debye and bohr3 respectively. qC and qS show charges in units of electrons
for carbon and sulfur atoms, respectively, obtained by the natural population analysis. PAHF and PACI are positron affinities obtained by HF and CI,
respectively, and are shown in units of meV.

Species Symmetry RCS θSCS RCC Eint µ α qC qS PAHF PACI

CS2
a D∞h 1.56 180 – – 0 49.6 −0.278 0.139 unbound unbound

C2S4 D2d 1.57 179.6 3.65b 2.07b 0 99.1 −0.256 0.128 unbound 46.18
a All data for the monomer from Reference 25

b Estimation by the CCSD calculation in this work

RCC

RCS

RCS

(a) Positron density (b) Electron density difference induced by positron attachment

Fig. 1 Positron density (a) and electron density difference induced by the positron attachment (b) for the [C2S4; e+] system. For (a), purple isodensity
surfaces with 90%, 75%, and 60% of the maximum density 2.065×10−4 e+·bohr−3 are enclosed from inner to outer, while for (b), isodensity surfaces
with ∆ρe(rrr) = 1.5×10−4, 5×10−5, and 1×10−5 e−·bohr−3 are shown by deep-to-light red colors, and those with ∆ρe(rrr) =−1.5×10−4, −5×10−5, and
−1×10−5 e−·bohr−3 are shown by deep-to-light blue colors. In both (a) and (b), two carbon atoms separated by RCC = 3.65 Å are shown by brown
balls, and sulfur atoms connected to the central carbon atoms with the bond distance RCS = 1.57 Å for each CS2 unit are shown by yellow balls.

Journal Name, [year], [vol.], 1–9 | 5



give Kν = 141 and 145 meV, respectively. These are still far from
the estimated experimental value of Kν = 115 meV. In addition, IR
inactive modes with the lowest vibrational energies, ν = 4390 and
4410 cm−1, give closer values, Kν = 119 and 120 meV, respectively,
but slightly higher in compared to the experimental value. For
more precise results, we evaluate the vibrational averaged PA and
simulate the vibrational Feshbach resonance by taking account of
the molecular vibrational effect in the following section.

4.2 Vibrational averaged positron affinity

Table 3 shows vibrational state quantum numbers nis PAν , µν ,
αν , and Kν for the lowest energy vibrational states arising from
the fundamental tones, the overtones, and the over-combination
tones of the IR inactive modes ν1, ν9, ν10, and the IR active modes
ν11, ν12. In our VSCF results for Eν , the vibrational excitation en-
ergies ∆Eν = 1523 cm−1 for n12 = 0 → 1 and ∆Eν = 1552 cm−1

for (n1,n12) = (0,0) → (1,1) are consistent with the correspond-
ing experimentally measured IR spectra, 1533 and 1546 cm−1 26,
respectively. These show only error bars of approximate 0.5%,
so that it is reasonable to be used for the vibrational averaging
calculations.

In compared to the PA value of equilibrium geometry PA(QQQeq)=

46.18 meV for the equilibrium state shown in Table 2, PAν s in-
crease to 54.7 meV for the ground and first three excited vibra-
tional states and to about 63.5 meV for the last two vibrationally
excited states. Using Eq. (1) with these PAν , we can predict a few
resonant peaks with in the ranges of Kν = 111–114 and 125–128
meV, which can be extremely close to the estimated experimen-
tal value of 115 meV in compared to the same analytical result
Kν = 5.02 meV for the CS2 monomer25. Considering the increase
of PA due to the vibrational effect as ∆PAν = PAν − PA(QQQeq), a
major contribution to ∆PAν , which can be obtained as ∆PAν = 9.5
meV, is already gained in the vibrational ground state lying at
Eν = 3049 cm−1. In addition, there are small but significant con-
tributions up to about ∆PAν = 14 meV via the excitations of ν9,
ν10, and ν12 in the vibrational excited states lying at Eν = 4390,
4410, and 4572 cm−1 in order to obtain the closest Kν to the ex-
perimental value. Therefore, it may be indispensable to elucidate
the mechanism of the vibrational enhancement of PA in terms of
contributions from the ground state normal mode vibrations as
well as the excited vibrational modes.

In order to figure out the detailed mechanism of the vibrational
effect particularly for the vibrational ground state, we analyzed
changes of PA, µ, and α with respect to the normal mode vibra-
tional coordinates QQQ. For the ground vibrational normal modes,
we have found rough classification into three schemes; (A) PAνi

decreased or almost unchanged from PA(QQQeq), (B) PAνi increased
without varying of µ, and (C) PAνi significantly increased with
increasing of µ (supplemental data can be available in Table S1
(ESI†)). As examples, in Figure 2 we show PA(Qi), µ(Qi), and
α(Qi) against displacements of the normal mode vibrational co-
ordinates around the equilibrium ones, Qi, for i = 4 (the CC inter-
molecular stretching), i = 8 (symmetric SCS bending vibration),
and i = 11,12 (degenerated asymmetric CS stretching) represent-
ing schemes (A), (B), and (C), respectively. In these figures, the

Table 3 The vibrational averaged positron affinity PAν , the vibrational
averaged dipole moment µν , the vibrational averaged dipole polarizability
αν , and the estimated resonant positron energy Kν for each vibrational
energy level ν of C2S4. The vibrational modes νi are defined in Table 1,
and all of the other omitted vibrational quantum numbers for i = 2–8 are
zeros. The vibrational energy levels Eν are given in units of cm−1, both
PAν and Kν are given in units of meV, and µν and αν are given in units
of debye and bohr3 respectively.

n1,n9,n10,n11,n12 Eν PAν µν αν Kν
(0, 0, 0, 0, 0) 3049 54.7 0.74 99.5 –
(0, 1, 1, 0, 0) 4390 54.7 0.74 99.7 111
(0, 0, 2, 0, 0) 4390 54.7 0.74 99.7 111
(0, 2, 0, 0, 0) 4410 54.5 0.74 99.6 114
(0, 0, 0, 0, 1) 4572 63.4 1.11 99.6 125
(1, 0, 0, 0, 1) 4601 63.5 1.11 99.7 128

upper and lower panels show PA(Qi) and |ψνi(Qi)|2, and µ(Qi)

and α(Qi), respectively. For the CC stretching vibration shown
in Figure 2 (a), Qi < 0 and Qi > 0 mean elongating and shrink-
ing of the CC distance RCC from the equilibrium distance, respec-
tively, PA(Q4) increases up to the local maximum of about 0.4 meV
higher than PA(QQQeq)= 46.18 meV at around Q4 ∼ 0.5 with increase
of Q4. Reducing PA by decrease of Q4 reasonably shows that dis-
sociation into individual CS2 monomers reduces PA to zero for
the equilibrium CS2. In contrast, increasing behavior of PA due to
increase of Q4 in the range of the finite probability |ψν4 |2 (shrink-
ing of RCC) also shows that formation of C2S4 may be favored in
enhancing the positron binding ability by change of the electronic
structure. In this vibrational mode, as shown in the lower panel
in Figure 2 (a), µ maintains zero, whereas α gradually decreases
with increasing Q4. For all vibrational states shown in Table 3,
this vibrational mode with ν4 = 0 results in a negative contribu-
tion as PAν4 = 36.96 meV. We have found that similarly, the A1

symmetric CS stretching mode i = 10 negatively contributes to
the vibrational averaged PA for the vibrational ground state (see
Table S1 (ESI†)), although that is very small and PAν10 is almost
the same to PA(QQQeq).

For the vibrational mode i = 8 shown in Figure 2 (b), increasing
of PA can be found with displacements Q8 onto both directions in
the range of finite probability |ψν8 |2. On this vibrational mode,
µ does not change but α increases due to the symmetric geo-
metrical change with respect to the center of the CC internuclear
axis. The same trend can be found in both the rotational-twisting
mode ν1 (see Figure S3 provided in ESI†). For the asymmetric CS
stretching vibrations i = 11 (and 12) shown in Figure 2 (c), great
increasing of PA by about few tens of meV is found in the range of
finite |ψν11 |2 (note that only for (c), vertical axes for PA and |ψνi |2

are shown in the different scaling to others). In this situation,
although α slightly decreases, µ remarkably increases in almost
proportional to the displacement Q11 onto both directions. Sim-
ilar trends to this mode can be found in other vibrational modes
as i = 5, 6, 7, and 9 containing SCS bending or CS stretching (see
Figure S3 in ESI†for details), which are also asymmetric vibra-
tional modes with respect to the center of the CC internulcear
axis. However, for these modes, increases of PA and µ, which are
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(a) On CC stretching vibration (i = 4) (b) On symmetric SCS bending

     vibration (i = 8)

(c) On asymmetric CS 

stretching vibration 
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 = 50.15 meV

Fig. 2 The probabilities of the vibrational states, the positron affinities, the dipole moments, and the dipole polarizabilities as functions of the normal
mode vibrational coordinates Qi for (a) i = 4, (b) i = 8, and (c) i = 11 and 12. Horizontal axes are given as displacements from the equilibrium
coordinates in units of bohr.
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less than 0.5 meV and 0.1 debye, respectively, are very small in
compared to i = 11 and 12.

Exceptionally, only for the vibrational mode i = 2 and 3 (de-
generated wagging motions of CS2 units), we found that PA is
reduced with the vibrational displacement and shows negative
correlations with both µ and α (see Figure S3 in ESI†). In such vi-
brational motions, the positron binding is considered to be rather
weaken due to the repulsive Coulomb interaction with the par-
tially positively charged sulfur atoms. However, this contribu-
tion is comparatively small and not large enough to be dominant.
Thus, in the case of [C2S4; e+] system, we confirmed two effec-
tive mechanisms of the vibrationally enhanced positron capture
in the vibrational ground state related to the vibrational normal
modes; the first one can be regarded as positive correlations be-
tween PA and α as seen in the dependence on Q8, and the second
one can be regarded as positive correlations between PA and µ as
seen in the dependence on Q11. For the [C2S4; e+] system, the
latter mechanism has the especially dominant contribution to the
increased PA in the vibrational ground state as well as first two or
three vibrational excited states shown in Table 3.

Similar analytical result for vibrationally enhanced PA was seen
in the case study for [CS2; e+]25. Referring to the results for CS2,
the largest increasing of PA (almost equivalent to PAν for CS2)
of about 2–5 meV can be found in the fundamental tones, the
first overtones, and the first combination tones associated with
the asymmetric CS stretching vibration mode, which also exhibit
increasing of µν by 1–2 debye. Assuming PAν to have a linear
dependence at least on µν ; namely, PAν ∼ aµν +b with constants
a and b as presented by Takeda et al.25, the [CS2; e+] system
showed a = 4.78 meV/debye, while the [C2S4; e+] system showed
a = 23.78 meV/debye.

In Table 3, in particular, Kν = 114 meV arising from the vibra-
tional excitation by the first overtone n9 = 2 for the B2 symmetric
CS stretching vibrational mode is the closest energy to the exper-
imental value. This results from the peak shift by the vibrational
energy for the vibrational excited state with n9 = 2 lying about 20
cm−1 above both of the combination tone (n9,n10) = (1,1) and the
overtone (n9,n10)= (0,2), although these PAν s are almost equal to
each other. Such higher excited vibrational energy level for n9 = 2
differentiated from (n9,n10) = (1,1) and (0,2) is clearly caused by
its anharmonicity. These lower vibrational excited states giving
resonant positron kinetic energies of 111–114 meV can be consid-
ered to have significant contributions to the positron capture in
the vibrational resonance, despite IR inactiveness. Possibilities of
contributions from IR inactive modes were also suggested in the
case studies for the vibrational resonant positron captures on 1,2-
trans-dichloroethylene and tetrachloroethylene with non-dipole
interaction12. On the other hand, Kν = 125 meV, which is slightly
higher than the experimental value, arises from the vibrational
excitation by the fundamental tone n12 = 1 for the asymmetric CS
stretching vibrational mode. This increased PAν can be consid-
ered to be yielded by the effective enhancement by the probability
of the vibrational state, as illustrated by n12 = 1 in Figure 2 (c).

5 Conclusions
We have investigated the positron binding ability by taking the
vibrational effect into account for the [C2S4; e+] system using
both the configuration interaction level and Hartree-Fock level
of multi-component molecular orbital method combined with the
self-consistent field level of vibrational variational Monte Carlo
method. We found that the equilibrium structure of C2S4 can have
the positronic bound state with the positron affinity (PA) of 46.18
meV in configuration interaction level while 0 meV in Hartree-
Fock level, where the electron-positron correlation effect as well
as the electronic structure of C2S4 is crucial to reproduce the pos-
itive PA value. By calculating the vibrational averaged PA, we
obtained that [C2S4; e+] can posses a few peaks corresponding
to the resonant positron kinetic energies in the range of 111–125
meV closing to the experimentally observed value estimated to
be 115 meV. The calculation result was also drastically improved
compared to our previous study on the [CS2; e+] system in which
the vibrational averaged PA was underestimated and resonance
positron kinetic energies Kν = 190 meV. Our analytical results
for vibrational averaged properties showed that PA can be effec-
tively increased by increased dipole moment along several asym-
metric SCS bending modes, and by increased dipole polarizability
on the symmetric CS stretching or SCS bending modes. The for-
mer mechanism for infrared active modes yields the dominant
contribution of the vibrationally enhanced PA via the ground vi-
brational modes, while the latter one for infrared inactive modes
have non-negligible contribution, particularly, via the excited vi-
brational modes. These effects for [C2S4; e+] was also verified to
be stronger than that for [CS2; e+].
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